PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Growth of Single-Crystalline Silicon Nanocone Arrays by Plasma Sputtering Reaction Deposition |
Zhi-Cheng Wu, Lei-Lei Guan, Hui Li, Jia-Da Wu, Jian Sun, Ning Xu**, |
Department of Optical Science and Engineering, Fudan University, Shanghai 200433
|
|
Cite this article: |
Zhi-Cheng Wu, Lei-Lei Guan, Hui Li et al 2017 Chin. Phys. Lett. 34 025202 |
|
|
Abstract Vertically aligned single-crystalline silicon nanocone (Si-NC) arrays are grown on nickel-coated silicon (100) substrates by a novel method i.e., abnormal glow-discharge plasma sputtering reaction deposition. The experimental results show that the inlet CH$_{4}$/(N$_{2}$+H$_{2}$) ratio has great effects on the morphology of the grown Si-NC arrays. The characterization of the morphology, crystalline structure and composition of the grown Si-NCs indicates that the Si-NCs are grown epitaxially in the vapor–liquid–solid mode. The analyses of optical emission spectra further reveal that the inlet methane can promote the growth of Si-NCs by raising the plasma temperature and enhancing the ion-sputtering. The understanding of the growth mechanism of the Si-NC arrays will be helpful for fabrication of required Si-NC arrays.
|
|
Received: 27 October 2016
Published: 25 January 2017
|
|
PACS: |
52.80.Tn
|
(Other gas discharges)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
82.33.Xj
|
(Plasma reactions (including flowing afterglow and electric discharges))
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB934303, the Natural Science Foundation of Shanghai under Grant No 15ZR1403300 and the National Natural Science Foundation of China under Grant No 11275051. |
|
|
[1] | Her T H, Finlay R J, Wu C, Deliwala S and Mazur E 1998 Appl. Phys. Lett. 73 1673 | [2] | Liu Y, Sun S H, Xu J, Zhao L, Sun H C, Li J, Mu W W, Xu L and Chen K J 2011 Opt. Express 19 A1051 | [3] | Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, McGehee M, Fan S and Cui Y 2009 Nano Lett. 9 279 | [4] | Xia Y, Liu B W, Liu J, Shen Z N and Li C B 2011 Sol. Energy 85 1574 | [5] | Jeong S, Garnett E C, Wang S, Yu Z, Fan S, Brongersma M L, McGehee M D and Cui Y 2012 Nano Lett. 12 2971 | [6] | Jeong S, McGehee M D and Cui Y 2013 Nat. Commun. 4 2950 | [7] | Zhou K, Li X, Liu S and Lee J 2014 Nanotechnology 25 415401 | [8] | He J, Yang Z, Liu P, Wu S, Gao P, Wang M, Zhou S, Li X, Cao H and Ye J 2016 Adv. Energy Mater. 6 1501793 | [9] | Zhang S, Liu W, Li Z, Liu M, Liu Y, Wang X and Yang F 2016 Chin. Phys. B 25 106802 | [10] | Qiu Y, Hao H C, Zhou J and Lu M 2012 Opt. Express 20 22087 | [11] | Ravi T S and Marcus R B 1991 J. Vac. Sci. Technol. B 9 2733 | [12] | Cho K and Joannopoulos J D 1993 Phys. Rev. Lett. 71 1387 | [13] | Kong L, Orr B G and Wise K D 1993 J. Vac. Sci. Technol. B 11 634 | [14] | Kichambare P D, Tarntair F G, Chen L C, Chen K H and Cheng H C 2000 J. Vac. Sci. Technol. B 18 2722 | [15] | Shirai H, Kobayashi T and Hasegawa Y 2005 Appl. Phys. Lett. 87 143112 | [16] | Chuang P K, Teng I J, Wang W H and Kuo C T 2005 Diamond Relat. Mater. 14 1911 | [17] | Hu W, Xu N, Xu X F, Wu J D, Shen Y Q and Ying Z F 2009 Chem. Vap. Depos. 15 306 | [18] | Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 | [19] | Prueitt L M 1963 J. Geophys. Res. 68 803 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|