Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 022401    DOI: 10.1088/0256-307X/34/2/022401
NUCLEAR PHYSICS |
Thick Target Neutron Production on Aluminum and Copper by 40MeV Deuterons
Chang-Lin Lan1,2**, Jia Wang1, Tao Ye1**, Wei-Li Sun1, Meng Peng2
1Institute of Applied Physics and Computational Mathematics, Beijing 100094
2School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
Cite this article:   
Chang-Lin Lan, Jia Wang, Tao Ye et al  2017 Chin. Phys. Lett. 34 022401
Download: PDF(493KB)   PDF(mobile)(477KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thick target neutron yields (TTNYs) of deuteron-induced reaction on Al and Cu isotopes are analyzed by combining the improved nuclear models and particle transport effects. The modified Glauber model is employed mainly to produce the peak of double differential cross section for the breakup process, and the exciton model and the Hauser–Feshbach theory are used for the statistical processes. The thin-layer accumulation method is used to calculate the TTNYs considering the neutron attenuation effects in the target. The calculated results are compared with the existing experimental data, and the analysis method can predict the TTNY data well at the deuteron energy of 40 MeV.
Received: 17 July 2016      Published: 25 January 2017
PACS:  24.10.-i (Nuclear reaction models and methods)  
  24.50.+g (Direct reactions)  
  25.60.-t (Reactions induced by unstable nuclei)  
Fund: Supported by the Project of China Academy of Engineering Physics under Grant No 2013B0103015.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/022401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/022401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang-Lin Lan
Jia Wang
Tao Ye
Wei-Li Sun
Meng Peng
[1]Garin P and Sugimoto M 2009 Fusion Eng. Des. 84 259
[2]Fadil M, Rannou B and the SPIRAL2 project team 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 4318
[3]Bem P, Simeckova E, Honusek M, Fischer U, Simakov S, Forrest R, Avrigeanu M, Obreja A, Roman F and Avrigeanu V 2009 Phys. Rev. C 79 044610
[4]Simeckova E, Bem P, Honusek M, Stefanik M, Fischer U, Simakov S, Forrest R, Koning A, Sublet J, Avrigeanu M, Roman F and Avrigeanu V 2011 Phys. Rev. C 84 014605
[5]Takacs S, Szelecsenyi F, Tarkanyi F, Sonck M, Hermanne A, Shubin Yu, Dityuk A, Mustafa M and Zhuang Y 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 174 235
[6]Takacs S, Tarkanyi F, Kiraly B, Hermanne A and Sonck M Y 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 251 56
[7]Nakao M, Hori J, Ochiai K, Kubota N, Sato S, Yamauchi M, Ishioka N and Nishitani T 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 562 785
[8]Shigyo N, Hidaka K, Hirabayashi K, Nakamura Y, Moriguchi D, Kumabe M, Hirano H, Hirayama S, Naitou Y, Motooka C, Lan C, Watanabe T, Watanabe Y, Sagara K, Maebaru S, Sakaki H and Takahash H 2011 J. Korean Phys. Soc. 59 1725
[9]Serber R 1947 Phys. Rev. 72 1008
[10]Glauber R J 1959 Lectures in Theoretical Physics (New York: Interscience) vol 1 p 315
[11]Faddeev L D 1960 Teor. Fiz. 39 1459
Faddeev L D 1961 Sov. Phys. JETP 12 1014
[12]Baur G and Trautmann D 1976 Phys. Rep. 25 293
[13]Johnson R C and Soper R 1970 Phys. Rev. C 1 976
[14]Yahiro M, Ogata K, Matsumoto T and Minomo K 2012 Prog. Theor. Exp. Phys. 1A206 and references therein
[15]Ogata K, Yahiro M, Iseri Y et al 2003 Phys. Rev. C 67 011602(R)
[16]Ye T, Watanabe Y and Ogata K 2009 Phys. Rev. C 80 014604
Ye T, Hashimoto S, Watanabe Y, Ogata K and Yahiro M 2011 Phys. Rev. C 84 054606
[17]Wang J, Ye T, Sun W, Watanabe Y and Ogata K 2011 Chin. Phys. Lett. 28 112401
[18]Koning A J, Hilaire S and Duijvestijn M C Proceedings of the International Conference on Nuclear Data for Science and Technology (Nice, France 22–27 April 2007)
Koning A and Rochman D 2012 Nuclear Data Sheets 113 2841
[19]Nakayama S, Araki S, Watanabe Y, Iwamoto O, Ye T and Ogata K 2014 Nucl. Data Sheets 118 305
Nakayama S, Araki S, Watanabe Y, Iwamoto O, Ye T and Ogata K 2015 Energy Procedia 71 219
Nakayama S, Kouno H, Watanabe H, Iwamoto O and Ogata K 2016 Phys. Rev. C 94 014618
[20]Hashimoto S, Iwamoto Y, Sato T, Niita K, Boudard A, Cugnon J, David J and Leray S 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 333 27
[21]Lei J and Moro A M 2015 Phys. Rev. C 92 044616
[22]Potel G, Nunes F M and Thompson I J 2015 Phys. Rev. C 92 034611
[23]Carlson B V, Capote R and Sin M 2016 Few Body Syst. 57 307
[24]Wei Z, Yan Y, Yao Z, Lan C and Wang J 2013 Phys. Rev. C 87 054605
[25]Ye T and Watanabe Y 2014 Nucl. Data Sheets 118 308
[26]Ziegler F, Ziegler M and Biersack J 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[27]An H X and Cai C H 2006 Phys. Rev. C 73 054605
[28]Hagiwara M, Itoga T, Baba M, Uddin M, Hirabayashi N, Oishi T and Yamauchi T 2004 J. Nucl. Mater. 329 218
[29]Schweimer G et al 1967 Nucl. Phys. A 100 537
Related articles from Frontiers Journals
[1] Bo-Song Huang, Yu-Gang Ma. A Photonuclear Reaction Model Based on IQMD in Intermediate-Energy Region[J]. Chin. Phys. Lett., 2017, 34(7): 022401
[2] MA Chun-Wang, ZHANG Yan-Li, WANG Shan-Shan, QIAO Chun-Yuan. A Model Comparison Study of Fragment Production in 140 A MeV 58,64Ni+9Be Reactions[J]. Chin. Phys. Lett., 2015, 32(07): 022401
[3] HAN Rui, CHEN Zhi-Qiang, R. Wada, ZHANG Su-Ya-La-Tu, LIU Xing-Quan, LIN Wei-Ping, JIN Zeng-Xue, HU Bi-Tao. Effects of In-Medium Nucleon-Nucleon Cross Section and Nuclear Density Distribution on the Proton-Nucleus Total Reaction Cross Section[J]. Chin. Phys. Lett., 2013, 30(12): 022401
[4] YAN Ting-Zhi. Scaling Behavior of Anisotropic Flows in Intermediate Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2013, 30(9): 022401
[5] ZHU Min, FU Jun-Li, QU Zhen, LIU Zu-Hua, WANG Wen-Zhong. The Role of Neck Evolution in the Synthesis of Superheavy Element 112[J]. Chin. Phys. Lett., 2013, 30(8): 022401
[6] M. Salehi, O. N. Ghodsi. The Influence of the Dependence of Surface Energy Coefficient to Temperature in the Proximity Model[J]. Chin. Phys. Lett., 2013, 30(4): 022401
[7] DOU Liang, WANG Nan**, ZHAO En-Guang . Nuclear Dynamical Quadrupole Deformations in Heavy-Ion Reactions[J]. Chin. Phys. Lett., 2011, 28(12): 022401
[8] WANG Jia, YE Tao, SUN Wei-Li**, Yukinobu Watanabe, Kazuyuki Ogata . Inclusive Proton Energy Spectra of the Deuteron Induced Reaction[J]. Chin. Phys. Lett., 2011, 28(11): 022401
[9] Ishwar Dutt**, Rajni Bansal . A Modified Proximity Approach in the Fusion of Heavy Ions[J]. Chin. Phys. Lett., 2010, 27(11): 022401
[10] Ishwar Dutt**, Narinder K. Dhiman. Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections[J]. Chin. Phys. Lett., 2010, 27(11): 022401
[11] WANG Nan, DOU Liang, ZHAO En-Guang, Werner Scheid. Nuclear Hexadecapole Deformation Effects on the Production of Super-Heavy Elements[J]. Chin. Phys. Lett., 2010, 27(6): 022401
[12] LI Jia-Xing, LIU Ping-Ping, WANG Jian-Song, HU Zheng-Guo, MAO Rui-Shi, LI Chen, CHEN Ruo-Fu, SUN Zhi-Yu, XU Hu-Shan, XIAO Guo-Qing, GUO Zhong-Yan. Experimental Study on the Exotic Structure of 12N in RIBLL[J]. Chin. Phys. Lett., 2010, 27(3): 022401
[13] YAN Ting-Zhi, HU Si-Ke, GUO Wen-Xue, WANG Sheng-Long, XU Jin-Ping. Isospin Effects on Anisotropic Flows in Intermediate Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2009, 26(11): 022401
[14] TIAN Jun-Long, LI Xian, YAN Shi-Wei, , WU Xi-Zhen, LI Zhu-Xia. Probing the Dissipation Mechanism in Ternary Reactions of 197Au+197Au by Mean Free Path of Nucleons[J]. Chin. Phys. Lett., 2009, 26(8): 022401
[15] TIAN Jun-Long, LI Xian, WU Xi-Zhen, LI Zhu-Xia, YAN Shi-Wei. Possible Mechanisms of Ternary Fission in the 197Au+197Au System at 15 A MeV[J]. Chin. Phys. Lett., 2009, 26(6): 022401
Viewed
Full text


Abstract