Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 020601    DOI: 10.1088/0256-307X/34/2/020601
GENERAL |
Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb
Hui Liu1,2, Xi Zhang1,2, Kun-Liang Jiang1,2, Jin-Qi Wang1,2, Qiang Zhu1, Zhuan-Xian Xiong1**, Ling-Xiang He1, Bao-Long Lyu1**
1Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, wuhan 430071
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Hui Liu, Xi Zhang, Kun-Liang Jiang et al  2017 Chin. Phys. Lett. 34 020601
Download: PDF(873KB)   PDF(mobile)(867KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the realization of closed-loop operation of an optical lattice clock based on $^{171}$Yb atoms. We interrogate the $^{1}\!S_{0}\rightarrow^{3}\!\!P_{0}$ clock transition using single Rabi pulses of 578 nm laser light. The two $\pi$-transitions from $m_{F}=\pm1/2$ ground states are alternatively interrogated, and the clock laser frequency is locked to the center of the two resonances. The in-loop error signal stability of the clock reaches $3\times10^{-17}$ for an average time of 3500 s. We also perform interleaved operations of the clock with two independent servo loops, and the fractional frequency difference averages down to $2\times10^{-16}$ in 7200 s.
Received: 28 November 2016      Published: 25 January 2017
PACS:  06.30.Ft (Time and frequency)  
  37.10.Jk (Atoms in optical lattices)  
  32.30.-r (Atomic spectra?)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61227805, 91536104, 11574352, 11274349 and 91636215, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030700.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/020601       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/020601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Liu
Xi Zhang
Kun-Liang Jiang
Jin-Qi Wang
Qiang Zhu
Zhuan-Xian Xiong
Ling-Xiang He
Bao-Long Lyu
[1]Nicholson T L et al 2015 Nat. Commun. 6 6896
[2]Ludlow A D et al 2015 Rev. Mod. Phys. 87 637
[3]Huntemann N et al 2016 Phys. Rev. Lett. 116 063001
[4]Bloom B J et al 2014 Nature 506 71
[5]Hinkley N et al 2013 Science 341 1215
[6]Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[7]Godun R M et al 2014 Phys. Rev. Lett. 113 210801
[8]Huang Y et al 2016 Phys. Rev. Lett. 116 013001
[9]Blatt S et al 2008 Phys. Rev. Lett. 100 140801
[10]Huntemann N et al 2014 Phys. Rev. Lett. 113 210802
[11]Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[12]Chou C W et al 2010 Science 329 1630
[13]Lin Y G et al 2015 Chin. Phys. Lett. 32 090601
[14]Zhou M et al 2013 Asia-Pacific Radio Science Conference (Taipei 3–7 September 2013)
[15]Lemke N D et al 2009 Phys. Rev. Lett. 103 063001
[16]K Beloy et al 2014 Phys. Rev. Lett. 113 260801
[17]Katori H et al 2015 Phys. Rev. A 91 052503
[18]Zhang M J et al 2016 Chin. Phys. Lett. 33 070601
[19]Zhang M J et al 2014 Chin. Phys. Lett. 31 086701
[20]Long Y et al 2013 Chin. Phys. Lett. 30 073402
[21]Blatt S et al 2009 Phys. Rev. A 80 052703
[22]Jiang Y Y et al 2011 Nat. Photon. 5 158
[23]Notcutt M et al 2006 Phys. Rev. A 73 031804
[24]Alnis J et al 2008 Phys. Rev. A 77 053809
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 020601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 020601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 020601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 020601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 020601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 020601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 020601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 020601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 020601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 020601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 020601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 020601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 020601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 020601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 020601
Viewed
Full text


Abstract