CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures |
Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang**, Yue Hao |
Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang et al 2017 Chin. Phys. Lett. 34 128501 |
|
|
Abstract Superior characteristics of AlGaN-channel metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the AlGaN-channel MIS HEMT can be reduced by 50% compared with the GaN-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the AlGaN-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at 25$^{\circ}\!$C and 1.06 MV/cm at 300$^{\circ}\!$C, which is almost 2 times and 3 times respectively larger than that of the reference GaN-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300$^{\circ}\!$C.
|
|
Received: 03 July 2017
Published: 24 November 2017
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
Fund: Supported by the 111 Project (B12026). |
|
|
[1] | Zhang K, Cao M Y, Lei X Y, Zhao S L, Yang L Y, Zheng X F, Ma X H and Hao Y 2013 Chin. Phys. B 22 097303 | [2] | Chu F T, Chen C, Zhou W and Liu X Z 2013 Chin. Phys. Lett. 30 097303 | [3] | Quan S, Ma X H, Zheng X F and Hao Y 2013 Chin. Phys. Lett. 30 028503 | [4] | Wang Y, Yu N S, Li M and Lau K M 2011 Chin. Phys. Lett. 28 057102 | [5] | Li X D, Zhang J C, Zou Y, Ma X Z, Liu C, Zhang W H, Wen H J and Hao Y 2015 Chin. Phys. Lett. 32 077205 | [6] | Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T and Tokuda Y 2008 Appl. Phys. Express 1 011101 | [7] | Stroke G W and Halioua M 1972 Phys. Lett. A 39 269 | [8] | Vitanov S, Palankovski V, Maroldt S and Quay R 2010 Solid-State Electron. 54 1105 | [9] | Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2002 Appl. Phys. Lett. 80 2186 | [10] | Krispin P, Spruytte S G, Harris J S and Ploog K H 2000 J. Appl. Phys. 88 4153 | [11] | Levinshtein M E, Rumyantsev S L and Shur M S 2008 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (New York: Wiley) | [12] | Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl. Phys. Lett. 79 1634 | [13] | Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60 | [14] | Zhang J F, Wang C, Zhang J C and Hao Y 2006 Chin. Phys. B 15 1060 | [15] | Albert G, Andrew M, Erica A, Carlos A, Michael P, Michael E, Torben R and Robert J 2016 Appl. Phys. Lett. 109 033509 | [16] | Ulek R T, Ligaz A, Okden S G, Teke A, zturk M O, Kasap M, Czelik S O, Arsian E and Zbay E O 2009 J. Appl. Phys. 105 013707 | [17] | Yagi S, Shimizu M, Inada M, Yamamoto Y, Piao G and Okumura H 2006 Solid-State Electron. 50 1057 | [18] | Eldad B T, Hilt O, Brunner F, Wurfl J and Trankle G 2008 IEEE Trans. Electron Devices 55 3354 | [19] | Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560 | [20] | Meneghesso G, Verzellesi G, Pierobon R and Rampazzo F 2004 IEEE Trans. Electron Devices 51 1554 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|