Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 127301    DOI: 10.1088/0256-307X/34/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Thickness and Temperature on Thermoelectric Properties of Bi$_{2}$Te$_{3}$-Based Thin Films
Dong-Dong Yang1,2, Hao Tong1,2, Ling-Jun Zhou1,2, Xiang-Shui Miao1,2**
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Dong-Dong Yang, Hao Tong, Ling-Jun Zhou et al  2017 Chin. Phys. Lett. 34 127301
Download: PDF(811KB)   PDF(mobile)(808KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bi$_{2}$Te$_{3}$ thin films and GeTe/B$_{2}$Te$_{3}$ superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric (TE) measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi$_{2}$Te$_{3}$ thin films and GeTe/B$_{2}$Te$_{3}$ superlattices, respectively. High TE performances with figure-of-merit ($ZT$) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi$_{2}$Te$_{3}$ thin films, respectively. These $ZT$ values are higher than those of p-type Bi$_{2}$Te$_{3}$ alloys as reported. Relatively high $ZT$ of the GeTe/B$_{2}$Te$_{3}$ superlattices at 300–380 K were 0.62–0.76. The achieved high $ZT$ value may be attributed to the unique nano- and micro-structures of the films, which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi$_{2}$Te$_{3}$-based thin films can serve as high-performance materials for applications in TE devices.
Received: 18 July 2017      Published: 24 November 2017
PACS:  73.50.Lw (Thermoelectric effects)  
  68.60.Dv (Thermal stability; thermal effects)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  73.61.-r (Electrical properties of specific thin films)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/127301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Dong Yang
Hao Tong
Ling-Jun Zhou
Xiang-Shui Miao
[1]Tritt T M and Subramanian M A 2006 MRS Bull. 31 188
[2]Ballikaya S, Uzar N and Yildirim H 2013 J. Electron. Mater. 42 1622
[3]Kadhim A, Hmood A and Hassan H A 2013 Solid State Sci. 21 110
[4]Buga S G, Serebryanaya N R and Dubitskiy G A 2011 High Press. Res. 31 86
[5]Zhang Q, Zhang Q and Chen S 2012 Nano Energy 1 183
[6]Xie W, Wang S and Zhu S 2013 J. Mater. Sci. 48 2745
[7]Pichanusakorn P and Bandaru P 2010 Mater. Sci. Eng. 67 19
[8]Medlin D L and Snyder G J 2009 Curr. Opinion Colloid & Interface Sci. 14 226
[9]Chen L D, Huang X Y and Zhou M 2006 J. Appl. Phys. 99 064305
[10]Tritt T M, Kanatzidis M G and Lyon H B 1997 Mater. Res. Soc. Proc. 478 73
[11]Nguyen P K, Lee K H and Moon J 2012 Nanotechnology 23 415604
[12]Liu Y C, Chen J D, Deng H Y, Hu G J Chen X S and Dai N 2016 Chin. Phys. Lett. 33 108102
[13]Bulat L P, Drabkin I A and Karatayev V V 2013 J. Electron. Mater. 42 2110
[14]Zhang X, Ma X Y and Zhang F P 2012 Acta Phys. Sin. 10 7498 (in Chinese)
[15]Imamuddin M and Dupre A 1972 Phys. Status Solidi A 10 415
[16]Tellier C R 1978 Thin Solid Films 51 311
[17]Pichard C R, Tellier C R and Tosser A J 1980 J. Phys. F 10 2009
[18]Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
Related articles from Frontiers Journals
[1] Xiaowen Han, Yiming Lu, Ying Liu, Miaomiao Wu, Yating Li, Zixing Wang, and Kefeng Cai. CuI/Nylon Membrane Hybrid Film with Large Seebeck Effect[J]. Chin. Phys. Lett., 2021, 38(12): 127301
[2] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 127301
[3] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 127301
[4] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 127301
[5] Li-Yan Zhou, Qi Zheng, Li-Hong Bao, Wen-Jie Liang. Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature[J]. Chin. Phys. Lett., 2020, 37(1): 127301
[6] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 127301
[7] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 127301
[8] ZHU Yue-Qin, ZHANG Zhong-Hua, SONG San-Nian, XIE Hua-Qing, SONG Zhi-Tang, SHEN Lan-Lan, LI Le, WU Liang-Cai, LIU Bo. Characterization of Ge Doping on Sb2Te3 for High-Speed Phase Change Memory Application[J]. Chin. Phys. Lett., 2015, 32(07): 127301
[9] XU Kun-Qi, ZENG Hua-Rong, YU Hui-Zhu, ZHAO Kun-Yu, LI Guo-Rong, SONG Jun-Qiang, SHI Xun, CHEN Li-Dong. An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization[J]. Chin. Phys. Lett., 2014, 31(12): 127301
[10] ZHANG Lian-Chang, SHI Zhi-Wen, YANG Rong, HUANG Jian. Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2014, 31(09): 127301
[11] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 127301
[12] ZHANG Xu, LIU Bo, PENG Cheng, RAO Feng, ZHOU Xi-Lin, SONG San-Nian, WANG Liang-Yong, CHENG Yan, WU Liang-Cai, YAO Dong-Ning, SONG Zhi-Tang, FENG Song-Lin. Germanium Nitride as a Buffer Layer for Phase Change Memory[J]. Chin. Phys. Lett., 2012, 29(10): 127301
[13] XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory[J]. Chin. Phys. Lett., 2010, 27(6): 127301
[14] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 127301
[15] YU Hai-Ming, S. Granville, YU Da-Peng, J-Ph. Ansermet. Second Harmonic Detection of Spin-Dependent Transport in Magnetic Nanostructures[J]. Chin. Phys. Lett., 2010, 27(2): 127301
Viewed
Full text


Abstract