Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 127101    DOI: 10.1088/0256-307X/34/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Properties of Defects Induced by H Irradiation in Tantalum Phosphide
Wei Cheng1,2,3, Yan-Long Fu1,2, Min-Ju Ying1,2, Feng-Shou Zhang1,2,4**
1Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2Beijing Radiation center, Beijing 100875
3Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201
4Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000
Cite this article:   
Wei Cheng, Yan-Long Fu, Min-Ju Ying et al  2017 Chin. Phys. Lett. 34 127101
Download: PDF(694KB)   PDF(mobile)(693KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tantalum phosphide (TaP) is predicted to be a kind of topological semimetal. Several defects of TaP induced by H irradiation are studied by the density functional theory. Electronic dispersion curves and density of states of these defects are reported. Various defects have different impacts on the topological properties. Weyl point positions are not affected by most defects. The H atom can tune the Fermi level as an interstitial. The defect of substitutional H on P site does not affect the topological properties. P and Ta vacancies of concentration 1/64 as well as the defect of substitutional H on Ta site destruct part of the Weyl points.
Received: 09 August 2017      Published: 24 November 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Ak (Metals, semimetals, and alloys)  
  71.20.Gj (Other metals and alloys)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11635003, 11025524, 11675280 and 11161130520, the Fundamental Research Funds for the Central Universities, the National Basic Research Program of China under Grant No 2010CB832903, and the European Commissions 7th Framework Programme (FP7-PEOPLE-2010-IRSES) under Grant No 269131.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/127101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/127101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Cheng
Yan-Long Fu
Min-Ju Ying
Feng-Shou Zhang
[1]Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293
[2]Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S and Hasan M Z 2015 Sci. Adv. 1 e1501092
[3]Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[4]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[5]Dai X, Le C, Wu X, Qin S, Lin Z and Hu J 2016 Chin. Phys. Lett. 33 127301
[6]Weber W J, Zhang Y and Wang L 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 277 1
[7]Zhang Y and Weber W J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1705
[8]Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[9]Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[10]Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[11]Han R S 2010 Physics 39 753 (in Chinese)
[12]Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Fuer Krist. 220 567
[13]Perdew J P J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 127101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 127101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 127101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 127101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 127101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 127101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 127101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 127101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 127101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 127101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 127101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 127101
Viewed
Full text


Abstract