GENERAL |
|
|
|
|
Quantum Adiabatic Evolution for Pattern Recognition Problem |
E. Rezaei Fard**, K. Aghayar |
Physics Department, Faculty of Sciences, Urmia University, Urmia P.B. 165, Iran
|
|
Cite this article: |
E. Rezaei Fard, K. Aghayar 2017 Chin. Phys. Lett. 34 120302 |
|
|
Abstract Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time-dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.
|
|
Received: 07 August 2017
Published: 24 November 2017
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
|
|
|
[1] | Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106 | [2] | Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472 | [3] | Apolloni B, Carvalho C and De Falco D 1989 Stochastic Processes Their Appl. 33 233 | [4] | Amara P, Hsu D and Straub J E 1993 J. Phys. Chem. 97 6715 | [5] | Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S and Regev O 2008 SIAM Rev. 50 755 | [6] | Das S, Kobes R and Kunstatter G 2002 Phys. Rev. A 65 062310 | [7] | Wei Z and Ying M 2006 Phys. Lett. A 354 271 | [8] | Hen I 2014 Europhys. Lett. 105 50005 | [9] | Roland J and Cerf N J 2002 Phys. Rev. A 65 042308 | [10] | Neigovzen R, Neves J L, Sollacher R and Glaser S J 2009 Phys. Rev. A 79 042321 | [11] | Messiah A 2014 Quantum Mechanics (New York: Dover Publications) chap 17 p 740 | [12] | Schiff L I 1949 Quantum Mechanics (New York: McGraw-Hill) chap 8 p 207 | [13] | Zhang D J, Yu X D and Tong D M 2014 Phys. Rev. A 90 042321 | [14] | Demuth H B, Beale M H, De Jess O and Hagan M T 1996 Neural Network Design (Boston: PWS-Kent) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|