Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 120302    DOI: 10.1088/0256-307X/34/12/120302
GENERAL |
Quantum Adiabatic Evolution for Pattern Recognition Problem
E. Rezaei Fard**, K. Aghayar
Physics Department, Faculty of Sciences, Urmia University, Urmia P.B. 165, Iran
Cite this article:   
E. Rezaei Fard, K. Aghayar 2017 Chin. Phys. Lett. 34 120302
Download: PDF(895KB)   PDF(mobile)(899KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time-dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.
Received: 07 August 2017      Published: 24 November 2017
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/120302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/120302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
E. Rezaei Fard
K. Aghayar
[1]Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106
[2]Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[3]Apolloni B, Carvalho C and De Falco D 1989 Stochastic Processes Their Appl. 33 233
[4]Amara P, Hsu D and Straub J E 1993 J. Phys. Chem. 97 6715
[5]Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S and Regev O 2008 SIAM Rev. 50 755
[6]Das S, Kobes R and Kunstatter G 2002 Phys. Rev. A 65 062310
[7]Wei Z and Ying M 2006 Phys. Lett. A 354 271
[8]Hen I 2014 Europhys. Lett. 105 50005
[9]Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
[10]Neigovzen R, Neves J L, Sollacher R and Glaser S J 2009 Phys. Rev. A 79 042321
[11]Messiah A 2014 Quantum Mechanics (New York: Dover Publications) chap 17 p 740
[12]Schiff L I 1949 Quantum Mechanics (New York: McGraw-Hill) chap 8 p 207
[13]Zhang D J, Yu X D and Tong D M 2014 Phys. Rev. A 90 042321
[14]Demuth H B, Beale M H, De Jess O and Hagan M T 1996 Neural Network Design (Boston: PWS-Kent)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 120302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 120302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 120302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 120302
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 120302
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 120302
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 120302
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 120302
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 120302
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 120302
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 120302
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 120302
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 120302
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 120302
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 120302
Viewed
Full text


Abstract