Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 120301    DOI: 10.1088/0256-307X/34/12/120301
GENERAL |
Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source
Jia-Ji Li1,2, Yang Wang1,2, Hong-Wei Li1,2, Peng Peng1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2, Hong-Xin Ma1,2, Lin-Xi Feng1,2, Wan-Su Bao1,2**
1Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Jia-Ji Li, Yang Wang, Hong-Wei Li et al  2017 Chin. Phys. Lett. 34 120301
Download: PDF(588KB)   PDF(mobile)(583KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Reference-frame-independent (RFI) quantum key distribution (QKD) is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames. We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source (HSPS) and present its security analysis. Compared with RFI QKD using a weak coherent pulse source (WCPS), numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance. Moreover, our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS. In addition, we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.
Received: 06 September 2017      Published: 24 November 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 61505261, 61675235, 61605248 and 11304397.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/120301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Ji Li
Yang Wang
Hong-Wei Li
Peng Peng
Chun Zhou
Mu-Sheng Jiang
Hong-Xin Ma
Lin-Xi Feng
Wan-Su Bao
[1]Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p 175
[2]Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[3]Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[4]Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301
[5]Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[6]Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
[7]Zhang P, Aungskunsiri K, Martín-López E, Wabnig J, Lobino M, Nock R W, Munns J, Bonneau D, Jiang P, Li H W, Laing A, Rarity J G, Niskanen A O, Thompson M G and O'Brien J L 2014 Phys. Rev. Lett. 112 130501
[8]Wabnig J, Bitauld D, Li H W, Laing A, O'Brien J L and Niskanen A O 2013 New J. Phys. 15 073001
[9]Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y, Huang J Z, Guo G C and Han Z F 2015 Sci. Rep. 4 3617
[10]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[11]Wang X B 2005 Phys. Rev. Lett. 94 230503
[12]Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[13]Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[14]Lütkenhaus N 2000 Phys. Rev. A 61 052304
[15]Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319
[16]Wang F M, Zhang P, Wang X L and Li F L 2016 Phys. Rev. A 94 062330
[17]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[18]Yin Z Q, Wang S, Chen W, Li H W, Guo G C and Han Z F 2014 Quantum Inf. Process.eed. 13 1237
[19]Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[20]Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A 95 032309
[21]Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[22]Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[23]Li Y, Bao W S, Li H W, Zhou C and Wang Y 2014 Phys. Rev. A 89 032329
[24]Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[25]Wang Q and Karlsson A 2007 Phys. Rev. A 76 014309
[26]Zhou C, Bao W S, Li H W, Wang Y, Li Y, Yin Z Q, Chen W and Han Z F 2014 Phys. Rev. A 89 052328
[27]Pramanik T, Park B K, Cho Y W, Han S W, Lee S Y, Kim Y S and Moon S 2017 Phys. Lett. A 381 2497
[28]Hoeffding W 1963 J. Am. Stat. Assoc. 58 13
[29]Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 120301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 120301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 120301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 120301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 120301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 120301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 120301
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 120301
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 120301
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 120301
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 120301
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 120301
Viewed
Full text


Abstract