PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Enhancement of Heat-Resistance of Carbonyl Iron Particles by Coating with Silica and Consequent Changes in Electromagnetic Properties |
Zhao-Wen Ren1, Hui Xie2**, Ying-Ying Zhou2,3 |
1School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021 2School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077 3State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
Zhao-Wen Ren, Hui Xie, Ying-Ying Zhou 2017 Chin. Phys. Lett. 34 105201 |
|
|
Abstract Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-absorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIPs. The reflection losses exceeding $-$10 dB of silica-coated CIPs are obtained in the frequency range 9.3–12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.
|
|
Received: 12 May 2017
Published: 27 September 2017
|
|
PACS: |
52.70.Gw
|
(Radio-frequency and microwave measurements)
|
|
52.70.Ds
|
(Electric and magnetic measurements)
|
|
|
|
|
[1] | Dong W, Qiu Y, Yang J et al 2016 J. Phys. Chem. C 120 12713 | [2] | Cao T, Wei C, Simpson R E et al 2014 Sci. Rep. 4 3955 | [3] | Cao T, Wei C, Simpson R E et al 2013 Opt. Mater. Express 3 1101 | [4] | Cao T, Zhang L, Simpson R E et al 2013 J. Opt. Soc. Am. B 30 1580 | [5] | Zhao L, Jiang W, Jin Y et al 2009 IFMBE Proc. 25 172 | [6] | Li D Y, Wang K, Wang X et al 2013 IFMBE Proc. 39 1624 | [7] | Kong L B, Li Z W, Liu L et al 2013 Int. Mater. Rev. 58 203 | [8] | Zhao F, Duan H, Wang W et al 2012 Physica B 407 2495 | [9] | Woo C H 2009 Philos. Mag. 89 2921 | [10] | Yin C, Fan J, Bai L et al 2013 J. Magn. Magn. Mater. 340 65 | [11] | Abshinova M A, Kazantseva N E, Sáha P et al 2008 Polym. Degrad. Stab. 93 1826 | [12] | Li J, Feng W J, Wang J S et al 2015 J. Magn. Magn. Mater. 393 82 | [13] | Qing Y C, Zhou W C, Shu J et al 2011 Physica B 406 777 | [14] | Yan L, Wang J, Han X et al 2010 Nanotechnology 21 095708 | [15] | Stöber W, Fink A and Bohn E 1968 J. Colloid Interface Sci. 26 62 | [16] | Zhu J, Wei S, Lee I et al 2012 RSC Adv. 2 1136 | [17] | Ebara H, Inoue T and Hashimoto O 2006 Sci. Technol. Adv. Mater. 7 77 | [18] | Małecki P, Królewicz M, Hiptmair F et al 2016 Smart Mater. Struct. 25 105030 | [19] | Ma J, Li J, Ni X et al 2009 Appl. Phys. Lett. 95 102505 | [20] | Wang H, Zhu D, Zhou W et al 2015 J. Magn. Magn. Mater. 375 111 | [21] | Liu L, Duan Y, Liu S et al 2010 J. Magn. Magn. Mater. 322 1736 | [22] | Chen L, Duan Y, Liu L et al 2011 Mater. Des. 32 570 | [23] | Zhou Y, Zhou W, Wang H et al 2015 J. Polym. Res. 22 1 | [24] | Gao B, Qiao L, Wang J et al 1970 J. Appl. Phys. 41 3850 | [25] | Jin H B, Li D, Cao M S et al 2011 Chin. Phys. Lett. 28 037701 | [26] | Wang T, Han R, Tan G et al 2012 J. Appl. Phys. 112 104903 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|