Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 104401    DOI: 10.1088/0256-307X/34/10/104401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Thermal Convection in a Tilted Rectangular Cell with Aspect Ratio 0.5
Qi Wang1, Bo-Lun Xu1, Shu-Ning Xia2, Zhen-Hua Wan1**, De-Jun Sun1**
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
2Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
Qi Wang, Bo-Lun Xu, Shu-Ning Xia et al  2017 Chin. Phys. Lett. 34 104401
Download: PDF(1678KB)   PDF(mobile)(1676KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal convection in a three-dimensional tilted rectangular cell with aspect ratio 0.5 is studied using direct numerical simulations within both Oberbeck–Boussinesq (OB) approximation and strong non-Oberbeck–Boussinesq (NOB) effects. The considered Rayleigh numbers $Ra$ range from $10^5$ to $10^7$, the working fluid is air at 300 K, and the corresponding Prandtl number $Pr$ is 0.71. Within the OB approximation, it is found that there exist multiple states for $Ra=10^5$ and hysteresis for $Ra=10^6$. For a relatively small tilt angle $\beta$, the large-scale circulation can either orient along one of the vertical diagonal planes (denoted by $M_{\rm d}$ mode) or orient parallel to the front wall (denoted by $M_{\rm p}$ mode). Which of the two modes transports heat more efficiently is not definitive, and it depends on the Rayleigh number $Ra$. For $Ra=10^7$ and $\beta=0^\circ$, the time-averaged flow field contains four rolls in the upper half and lower half of the cell, respectively, $M_{\rm d}$ and $M_{\rm p}$ modes only developing in tilted cells. By investigating NOB effects in tilted convection for fixed $Ra=10^6$, it is found that the NOB effects on the Nusselt number $Nu$, the Reynolds number $Re$ and the central temperature $T_{\rm c}$ for different $\beta$ ranges are different. NOB effects can either increase or decrease $Nu$, $Re$ and $T_{\rm c}$ when $\beta$ is varied.
Received: 28 June 2017      Published: 27 September 2017
PACS:  44.25.+f (Natural convection)  
  47.20.Bp (Buoyancy-driven instabilities (e.g., Rayleigh-Benard))  
  47.27.te (Turbulent convective heat transfer)  
  47.55.pb (Thermal convection)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11572314, 11232011 and 11621202, and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/104401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/104401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Wang
Bo-Lun Xu
Shu-Ning Xia
Zhen-Hua Wan
De-Jun Sun
[1]Ahlers G, Grossmann S and Lohse D 2009 Rev. Mod. Phys. 81 503
[2]Lohse D and Xia K Q 2010 Annu. Rev. Fluid Mech. 42 335
[3]Xia K Q 2013 Theor. Appl. Mech. Lett. 3 052001
[4]Verma M K, Kumar A and Pandey A 2017 New J. Phys. 19 025012
[5]Shishkina O and Horn S 2016 J. Fluid Mech. 790 R3
[6]Guo S X, Zhou S Q, Cen X R et al 2015 J. Fluid Mech. 762 273
[7]Guo S X, Zhou S Q, Qu L, Cen X R and Lu Y Z 2017 Int. J. Heat Mass Transfer 111 933
[8]Stevens R J A M, Verzicco R and Lohse D 2010 J. Fluid Mech. 643 495
[9]Stevens R J A M, Zhou Q, Grossmann S, Verzicco R, Xia K Q and Lohse D 2012 Phys. Rev. E 85 027301
[10]Ahlers G, Brown E, Araujo F F, Funfschilling D, Grossmann S and Lohse D 2006 J. Fluid Mech. 569 409
[11]Ahlers G, Araujo F F, Funfschilling D, Grossmann D and Lohse D 2007 Phys. Rev. Lett. 98 054501
[12]Horn S, Shishkina O and Wagner C 2013 J. Fluid Mech. 724 175
[13]Xia S N, Wan Z H, Liu S Wang Q and Sun D J 2016 J. Fluid Mech. 798 628
[14]Paolucci S 1982 On the Filtering of Sound from the Navier-Stokes Equations (Sandia National Laboratory Report SAND) pp 3–52
[15]Sun C, Xi H D and Xia K Q 2005 Phys. Rev. Lett. 95 074502
[16]Xia K Q 2011 J. Fluid Mech. 676 1
[17]Xi H D and Xia K Q 2008 Phys. Fluids 20 055104
Related articles from Frontiers Journals
[1] HAN Jun-Qing, LIU Qiu-Sheng . Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator[J]. Chin. Phys. Lett., 2013, 30(5): 104401
[2] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 104401
[3] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 104401
[4] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 104401
[5] SUN Liang, MA Dong-Jun, ZHANG Wei, SUN De-Jun. Onset of Unsteady Horizontal Convection in Rectangular Tank at Pr=1[J]. Chin. Phys. Lett., 2008, 25(6): 104401
[6] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 104401
[7] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 104401
[8] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall[J]. Chin. Phys. Lett., 2006, 23(6): 104401
[9] ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Transportation Characteristics for a Class of Generalized N-Diffusion Equation with Convection[J]. Chin. Phys. Lett., 2004, 21(6): 104401
[10] GUO Wei-Bin, SHI Bao-Chang, WANG Neng-Chao, GUO Zhao-Li. Lattice Bhatnagar-Gross-Krook Simulation of Stratified Backward-Facing Step Flow[J]. Chin. Phys. Lett., 2002, 19(12): 104401
[11] LIU Zhao-Hua, JIN Wei-Qing, PAN Zhi-Lei. Numerical Modeling of Velocity and Temperature Distribution of the Buoyancy Convection Effect in KNbO3 Melt[J]. Chin. Phys. Lett., 2002, 19(7): 104401
[12] SHI Bao-Chang, GUO Zhao-Li, WANG Neng-Chao. Lattice Bhatnagar-Gross-Krook Simulations of Turbulent Natural Convection in a Cavity[J]. Chin. Phys. Lett., 2002, 19(4): 104401
Viewed
Full text


Abstract