Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017102    DOI: 10.1088/0256-307X/34/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons
Yan Lu1, Wen-Gang Lu2,3**, Li Wang1**
1Department of Physics, Nanchang University, Nanchang 330031
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190
Cite this article:   
Yan Lu, Wen-Gang Lu, Li Wang 2017 Chin. Phys. Lett. 34 017102
Download: PDF(957KB)   PDF(mobile)(954KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explore the excitonic effects in chiral graphene nanoribbons (cGNRs), whose edges are composed alternatively of armchair-edged and zigzag-edged segments. For cGNRs dominated by armchair edges, their energy gaps and exciton energies decrease with increasing chirality angles, and they, as functions of widths, oscillate with the period of three, while the exciton binding energies do not have such distinct oscillation. On the other hand, for cGNRs dominated by zigzag edges, all the energy gaps, exciton energies, and exciton binding energies show oscillation properties with their widths, due to the interactions between the edge states localized at the opposite zigzag edges. In addition, the triplet excitons are energy degenerate when the electrons are spin-unpolarized, while the degeneracy split when the electrons are spin-polarized. All the studied cGNRs show strong excitonic effects with the exciton binding energies of hundreds of meV.
Received: 18 October 2016      Published: 29 December 2016
PACS:  71.35.-y (Excitons and related phenomena)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  62.23.Hj (Nanowires)  
Fund: Supported by the National Key Scientific Research Projects of China under Grant No 2015CB932400, the National Natural Science Foundation of China under Grant Nos 11504158, 61474059, and U1432129, the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No NCET-11-1003, and the Jiangxi Provincial 'Ganpo Talentes 555 Projects'.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/017102       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/017102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan Lu
Wen-Gang Lu
Li Wang
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2]Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3]Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[4]Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[5]Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, Guo J and Dai H 2011 Nat. Nanotechnol. 6 563
[6]Li Y Y, Chen M X, Weinert M and Li L 2014 Nat. Commun. 5 4311
[7]Wang W X, Zhou M, Li X, Li S Y, Wu X, Duan W and He L 2016 Phys. Rev. B 93 241403(R)
[8]Jaskólski W, Ayuela A, Pelc M, Santos H and Chico L 2011 Phys. Rev. B 83 235424
[9]Yazyev O V, Capaz R B and Louie S G 2011 Phys. Rev. B 84 115406
[10]Sun L, Wei P, Wei J, Sanvito S and Hou S 2011 J. Phys.: Condens. Matter 23 425301
[11]Golor M, Lang T C and Wessel S 2013 Phys. Rev. B 87 155441
[12]Carvalho A R, Warnes J H and Lewenkopf C H 2014 Phys. Rev. B 89 245444
[13]Jaskolski W and Ayuela A 2014 Solid State Commun. 196 1
[14]Berahman M, Asad M, Sanaee M and Sheikhi M H 2015 Opt. Quantum Electron. 47 3289
[15]Yang L, Cohen M L and Louie S G 2007 Nano Lett. 7 3112
[16]Lu Y, Zhao S, Lu W, Liu H and Liang W 2014 J. Appl. Phys. 115 103701
[17]Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
[18]Lu Y, Lu W G, Liang W J and Liu H 2013 Phys. Rev. B 88 165425
[19]Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[20]Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[21]Pariser R and Parr R G 1953 J. Chem. Phys. 21 466
Pople J A 1953 Trans. Faraday Soc. 49 1375
[22]McWilliams P C M, Hayden G W and Soos Z G 1991 Phys. Rev. B 43 9777 and references therein
[23]Abe S, Yu J and Su W P 1992 Phys. Rev. B 45 8264
[24]Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402
[25]Ohno K 1964 Theor. Chim. Acta 2 219
[26]Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927
[27]Ezawa M 2006 Phys. Rev. B 73 045432
[28]Jiang Z and Song Y 2015 Physica B 464 61
Related articles from Frontiers Journals
[1] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 017102
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 017102
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 017102
[4] Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang, Gang Tang. Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2018, 35(8): 017102
[5] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 017102
[6] YU Gui-Li, LI Gui-Chen, JIA Yong-Lei, TANG Gang. States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2014, 31(09): 017102
[7] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 017102
[8] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 017102
[9] CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang** . Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution[J]. Chin. Phys. Lett., 2011, 28(11): 017102
[10] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 017102
[11] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 017102
[12] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 017102
[13] YANG Shao-Peng**, HUANG Da, GE Da-Yong, LIU Bo-Ya, WANG Li-Shun, FU Guang-Sheng . Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures[J]. Chin. Phys. Lett., 2011, 28(8): 017102
[14] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 017102
[15] SHU Shi-Wei, MA Guo-Hong. Temperature-Dependent Defect-Induced New Emission in ZnSe Crystal[J]. Chin. Phys. Lett., 2009, 26(4): 017102
Viewed
Full text


Abstract