CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Performance Improvement of GaN-Based Violet Laser Diodes |
De-Gang Zhao1,2**, De-Sheng Jiang1, Ling-Cong Le1, Jing Yang1, Ping Chen1, Zong-Shun Liu1, Jian-Jun Zhu1, Li-Qun Zhang3 |
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2University of Chinese Academy of Sciences, Beijing 100049 3Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
|
|
Cite this article: |
De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le et al 2017 Chin. Phys. Lett. 34 017101 |
|
|
Abstract The influences of InGaN/GaN multiple quantum wells (MQWs) and AlGaN electron-blocking layers (EBL) on the performance of GaN-based violet laser diodes are investigated. Compared with the InGaN/GaN MQWs grown at two different temperatures, the same-temperature growth of InGaN well and GaN barrier layers has a positive effect on the threshold current and slope efficiency of laser diodes, indicating that the quality of MQWs is improved. In addition, the performance of GaN laser diodes could be further improved by increasing Al content in the AlGaN EBL due to the fact that the electron leakage current could be reduced by properly increasing the barrier height of AlGaN EBL. The violet laser diode with a peak output power of 20 W is obtained.
|
|
Received: 13 October 2016
Published: 29 December 2016
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0401801, the National Natural Science Foundation of China under Grant Nos 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, and 61223005, and the One Hundred Person Project of the Chinese Academy of Sciences. |
|
|
[1] | Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353 | [2] | Nakamura S 1991 Jpn. J. Appl. Phys. II 30 L1705 | [3] | Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M and Yang H 2016 J. Semicond. 37 044006 | [4] | Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Li X, Liang F, Liu J P and Yang H 2015 Chin. Phys. B 24 127801 | [5] | Cicek E, McClintock R, Haddadi A, Rojas W A G and Razeghi M 2014 IEEE J. Quantum Electron. 50 591 | [6] | Nakamura S 1998 Science 281 956 | [7] | Farrell R M, Haeger D A, Hsu P S, Schmidt M C, Fujito K, Feezell D F, S DenBaars P, Speck J S and Nakamura S 2011 Appl. Phys. Lett. 99 171113 | [8] | Brüninghoff S, Eichler C, Tautz S, Lell A, Sabathil M, Lutgen S and Strauß U 2009 Phys. Status Solidi A 206 1149 | [9] | Liu J P, Li Z C, Zhang L Q, Zhang F, Tian A Q, Zhou K, Li D Y, Zhang S M and Yang H 2014 Appl. Phys. Express 7 111001 | [10] | Hoffmann V, Knauer A, Brunner C, Einfeldt S, Weyers M, Tränkle G, Haberland K, Zettler J T and Kneissl M 2011 J. Cryst. Growth 315 5 | [11] | Lipski F, Klein M, Yao X and Scholz F 2012 J. Cryst. Growth 352 235 | [12] | Lee S N, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Chio K K, Ha K H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101 | [13] | Piprek J and Li S 2013 Appl. Phys. Lett. 102 023510 | [14] | Zhang D, Liu Z C and Hu X D 2009 Semicond. Sci. Technol. 24 045003 | [15] | Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M and Yang H 2014 Opt. Express 22 11392 | [16] | See http://www.crosslight.com | [17] | Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M and L W 2016 J. Semicond. 37 014007 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|