Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017101    DOI: 10.1088/0256-307X/34/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Performance Improvement of GaN-Based Violet Laser Diodes
De-Gang Zhao1,2**, De-Sheng Jiang1, Ling-Cong Le1, Jing Yang1, Ping Chen1, Zong-Shun Liu1, Jian-Jun Zhu1, Li-Qun Zhang3
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2University of Chinese Academy of Sciences, Beijing 100049
3Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
Cite this article:   
De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le et al  2017 Chin. Phys. Lett. 34 017101
Download: PDF(404KB)   PDF(mobile)(404KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influences of InGaN/GaN multiple quantum wells (MQWs) and AlGaN electron-blocking layers (EBL) on the performance of GaN-based violet laser diodes are investigated. Compared with the InGaN/GaN MQWs grown at two different temperatures, the same-temperature growth of InGaN well and GaN barrier layers has a positive effect on the threshold current and slope efficiency of laser diodes, indicating that the quality of MQWs is improved. In addition, the performance of GaN laser diodes could be further improved by increasing Al content in the AlGaN EBL due to the fact that the electron leakage current could be reduced by properly increasing the barrier height of AlGaN EBL. The violet laser diode with a peak output power of 20 W is obtained.
Received: 13 October 2016      Published: 29 December 2016
PACS:  71.20.Nr (Semiconductor compounds)  
  71.55.Eq (III-V semiconductors)  
  78.55.Cr (III-V semiconductors)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0401801, the National Natural Science Foundation of China under Grant Nos 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, and 61223005, and the One Hundred Person Project of the Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/017101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/017101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
De-Gang Zhao
De-Sheng Jiang
Ling-Cong Le
Jing Yang
Ping Chen
Zong-Shun Liu
Jian-Jun Zhu
Li-Qun Zhang
[1]Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[2]Nakamura S 1991 Jpn. J. Appl. Phys. II 30 L1705
[3]Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M and Yang H 2016 J. Semicond. 37 044006
[4]Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Li X, Liang F, Liu J P and Yang H 2015 Chin. Phys. B 24 127801
[5]Cicek E, McClintock R, Haddadi A, Rojas W A G and Razeghi M 2014 IEEE J. Quantum Electron. 50 591
[6]Nakamura S 1998 Science 281 956
[7]Farrell R M, Haeger D A, Hsu P S, Schmidt M C, Fujito K, Feezell D F, S DenBaars P, Speck J S and Nakamura S 2011 Appl. Phys. Lett. 99 171113
[8]Brüninghoff S, Eichler C, Tautz S, Lell A, Sabathil M, Lutgen S and Strauß U 2009 Phys. Status Solidi A 206 1149
[9]Liu J P, Li Z C, Zhang L Q, Zhang F, Tian A Q, Zhou K, Li D Y, Zhang S M and Yang H 2014 Appl. Phys. Express 7 111001
[10]Hoffmann V, Knauer A, Brunner C, Einfeldt S, Weyers M, Tränkle G, Haberland K, Zettler J T and Kneissl M 2011 J. Cryst. Growth 315 5
[11]Lipski F, Klein M, Yao X and Scholz F 2012 J. Cryst. Growth 352 235
[12]Lee S N, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Chio K K, Ha K H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101
[13]Piprek J and Li S 2013 Appl. Phys. Lett. 102 023510
[14]Zhang D, Liu Z C and Hu X D 2009 Semicond. Sci. Technol. 24 045003
[15]Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M and Yang H 2014 Opt. Express 22 11392
[16]See http://www.crosslight.com
[17]Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M and L W 2016 J. Semicond. 37 014007
Related articles from Frontiers Journals
[1] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 017101
[2] Quanyin Tang, Ji-Hui Yang, Zhi-Pan Liu, and Xin-Gao Gong. Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure[J]. Chin. Phys. Lett., 2020, 37(9): 017101
[3] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 017101
[4] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chin. Phys. Lett., 2019, 36(7): 017101
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 017101
[6] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 017101
[7] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 017101
[8] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 017101
[9] Ya-Wei Zhang, Kai-Ke Yang, Hui-Xiong Deng. Structural Phase Transition and a Mutation of Electron Mobility in Zn$_{x}$Cd$_{1-x}$O Alloys[J]. Chin. Phys. Lett., 2018, 35(5): 017101
[10] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 017101
[11] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 017101
[12] Peng-Xian Lu, Rui-Xia Zhao. Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation[J]. Chin. Phys. Lett., 2017, 34(3): 017101
[13] A. Stashans, K. Rivera. Electronic and Magnetic Properties of Co- and Mn-codoped ZnO by Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(09): 017101
[14] SHEN Hua-Jun, TANG Ya-Chao, PENG Zhao-Yang, DENG Xiao-Chuan, BAI Yun, WANG Yi-Yu, LI Cheng-Zhan, LIU Ke-An, LIU Xin-Yu. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(12): 017101
[15] CHENG Fang, REN Yi, SUN Jin-Fang. Transport through a Single Barrier on Monolayer MoS2[J]. Chin. Phys. Lett., 2015, 32(10): 017101
Viewed
Full text


Abstract