Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 015202    DOI: 10.1088/0256-307X/34/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Imaging Laser wake fields by Thomson Scattering a Co-Propagating Pulse
Hong-Jie Liu1,2**, Yu-Qiu Gu1,2, Gang Li1,2, Feng Lu1,2, Bo Cui1,2, Zeng-Hai Dai1,2, Yan-Yun Ma3, Wei-Min Zhou1,2, Lei-Feng Cao1,2, Bao-Han Zhang1,2
1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900
2Science and Technology on Plasma Physics Laboratory, Mianyang 621900
3Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
Hong-Jie Liu, Yu-Qiu Gu, Gang Li et al  2017 Chin. Phys. Lett. 34 015202
Download: PDF(563KB)   PDF(mobile)(558KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thomson scattering imaging (TSI) is proposed and experimentally demonstrated to observe the fine structure of the laser wake field. By Thomson scattering a co-propagating laser pulse, we obtain clear images indicating that the wake field is like an acaleph swimming behind the pump laser. The wavelength of the wake field observed at different electron densities agrees well with the theory. Since no mathematics transformation is involved, TSI could be potentially used as an online monitor for future 'tabletop' plasma accelerators.
Received: 18 August 2016      Published: 29 December 2016
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.80.Dy (Low-field and Townsend discharges)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
Fund: Supported by the National Natural Science Foundation of China, and the Foundation of Science and Technology on Plasma Physics Laboratory.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/015202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/015202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Jie Liu
Yu-Qiu Gu
Gang Li
Feng Lu
Bo Cui
Zeng-Hai Dai
Yan-Yun Ma
Wei-Min Zhou
Lei-Feng Cao
Bao-Han Zhang
[1]Leemans W P et al 2006 Nat. Phys. 2 696
[2]Mangles S et al 2004 Nature 431 535
[3]Geddes C et al 2004 Nature 431 538
[4]Faure J et al 2004 Nature 431 541
[5]Nakamura K et al 2007 Phys. Plasmas 14 056708
[6]Bulanov B et al 2006 Plasma Phys. Rep. 32 263
[7]Umstadter D et al 1994 Phys. Rev. Lett. 72 1224
[8]Nakajima K et al 1995 Phys. Rev. Lett. 74 4428
[9]Modena A et al 1995 Nature 377 606
[10]Durfee III C G et al 1993 Phys. Rev. Lett. 71 2409
[11]Matlis N et al 2006 Nat. Phys. 2 749
[12]Kotaki H et al 2002 Phys. Plasmas 9 1392
[13]Takahashi E et al 2000 Phys. Rev. E 62 7247
[14]Siders C et al 1996 Phys. Rev. Lett. 76 3570
[15]Le Blanc S P et al 2000 Opt. Lett. 25 764
[16]Maksimuchuk A et al 2008 Phys. Plasmas 15 056703
[17]Evans D and Katzenstein J 1969 Rep. Prog. Phys. 32 207
[18]Chen S et al 1998 Nature 396 653
[19]Peng H S et al 2006 Laser Phys. 16 1
[20]Bulanov S V et al 2006 Plasma Phys. Rep. 32 263
[21]Castillo-Herrera C I and Johnston T W 1993 IEEE Trans. Plasma Sci. 21 125
[22]Esarey E et al 1993 Phys. Rev. E 48 3003
[23]Gao J 2004 Phys. Rev. Lett. 93 243001
[24]Dodd E et al 2004 Phys. Rev. E 70 056410
[25]Esarey E and Pilloff M 1995 Phys. Plasmas 2 1432
[26]Krushelnick K et al 1997 Phys. Rev. Lett. 78 4047
Related articles from Frontiers Journals
[1] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 015202
[2] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 015202
[3] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 015202
[4] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 015202
[5] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 015202
[6] Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang, Xiao-Hui Zhang. Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System[J]. Chin. Phys. Lett., 2016, 33(10): 015202
[7] Jun Guo. A Particle-in-Cell Simulation Study on Harmonic Waves Excited by Electron Beams in Unmagnetized Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 015202
[8] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 015202
[9] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 015202
[10] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 015202
[11] Shah M. G., Hossen M. R., Sultana S., Mamun A. A.. Positron-Acoustic Shock Waves in a Degenerate Multi-Component Plasma[J]. Chin. Phys. Lett., 2015, 32(08): 015202
[12] M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2015, 32(01): 015202
[13] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion[J]. Chin. Phys. Lett., 2013, 30(1): 015202
[14] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, and CAI Hong. Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line[J]. Chin. Phys. Lett., 2012, 29(8): 015202
[15] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 015202
Viewed
Full text


Abstract