Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 015203    DOI: 10.1088/0256-307X/34/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Energetic Ion Effects on the Ion Saturation Current
Bin-Bin Lin1,2**, Nong Xiang1,2**, Jing Ou1,2, Xiao-Yun Zhao1,2,3
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
2Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031
3School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037
Cite this article:   
Bin-Bin Lin, Nong Xiang, Jing Ou et al  2017 Chin. Phys. Lett. 34 015203
Download: PDF(653KB)   PDF(mobile)(651KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than $\sqrt {T_{\rm e}/(\gamma_{\rm i2}T_{\rm i2})}$, where $T_{\rm e}$ is the electron temperature, and $\gamma _{\rm i2}$ and $T_{\rm i2}$ represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the $I$–$V$ characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.
Received: 24 October 2016      Published: 29 December 2016
PACS:  52.40.Kh (Plasma sheaths)  
  52.65.Rr (Particle-in-cell method)  
  52.27.Cm (Multicomponent and negative-ion plasmas)  
Fund: Supported by the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences 'One-Three-Five' Strategic Planning, the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC No 11261140328 and NRF No 2012K2A2A6000443), the National ITER Program of China under Grant No 2015GB101003, and the National Natural Science Foundation of China under Grant Nos 11405215, 11475223 and 11505236.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/015203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/015203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin-Bin Lin
Nong Xiang
Jing Ou
Xiao-Yun Zhao
[1]Merlino R L 2007 Am. J. Phys. 75 1078
[2]Khoramabadi M and Masoudi S F 2013 Chin. Phys. Lett. 30 085202
[3]Heidbrink W W and Sadler G J 1994 Nucl. Fusion 34 535
[4]Zhu Y B, Heidbrink W W and Pickering L D 2010 Nucl. Fusion 50 084024
[5]Stangeby P C 1995 Plasma Phys. Control. Fusion 37 1031
[6]Ou J, Lin B B, Zhao X Y and Yang Y L 2016 Plasma Phys. Control. Fusion 58 075004
[7]Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709
[8]Hatami M M, Niknam A R, Shokri B and Ghomi H 2008 Phys. Plasmas 15 053508
[9]Xiang N, Hu Y M and Ou J 2011 Plasma Sci. Technol. 13 385
[10]Franklin R N 2003 J. Phys. D 36 1806
[11]Zhao X Y, Xiang N, Ou J, Li D H and Lin B B 2016 Chin. Phys. B 25 025202
[12]Nieter C and Cary J R 2004 J. Comput. Phys. 196 448
[13]Lin B B, Xiang N and Ou J 2016 Phys. Plasmas 23 083508
[14]Weng S M, Sheng Z M, He M Q, Zhang J, Norreys P A, Sherlock M and Robinson A P 2008 Phys. Rev. Lett. 100 185001
[15]Teodoru S, Tskhakaya D, Kuhn S, Tskhakaya D D, Schrittwieser R, Ionita C and Popa G 2005 J. Nucl. Mater. 337 1111
[16]Kuhn S, Riemann K U, Jelicí N, Tskhakaya D D, Tskhakaya D and Stanojevicí M 2006 Phys. Plasmas 13 013503
[17]Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: IOP)
[18]Devaux S and Manfredi G 2006 Phys. Plasmas 13 083504
[19]Jelicí N, Riemann K U, Gyergyek T, Kuhn S, Stanojevicí M and Duhovnik J 2007 Phys. Plasmas 14 103506
[20]Pace D C, Pinsker R I, Heidbrink W W, Fisher R K, Van Zeeland M A, Austin M E, McKee G R and Garcia-Munoz M 2012 Nucl. Fusion 52 063019
Related articles from Frontiers Journals
[1] Mansour Khoramabadi, S. Farhad Masoudi. Numerical Examination of the Effects of Ion Thermal Flow on Plasma Sheath Characteristics[J]. Chin. Phys. Lett., 2013, 30(8): 015203
[2] DING Fang, ZHENG Shi-Jian, KE Bo, TANG Zhong-Liang, ZHANG Yi-Chuan, YANG Kuan, XIE Xin-Hua, ZHU Xiao-Dong. Self-Adjusting Characterization for Steady-State, Direct Current Cathode-Dominated Glow Discharge Plasmas at High Pressures[J]. Chin. Phys. Lett., 2013, 30(8): 015203
[3] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 015203
[4] DAI Zhong-Ling, WANG You-Nian** . Nonlinear Plasma Dynamics in Electron Heating of Asymmetric Capacitive Discharges with a Fluid Sheath Model[J]. Chin. Phys. Lett., 2011, 28(7): 015203
[5] HAO Mei-Lan, DAI Zhong-Ling, WANG You-Nian. Simulation of Dual Frequency Capacitive Sheath over a Concave Electrode in Low Pressure[J]. Chin. Phys. Lett., 2009, 26(12): 015203
[6] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium[J]. Chin. Phys. Lett., 2008, 25(11): 015203
[7] LIU Yu, DAI Zhong-Ling, WANG You-Nian. Dust Particle Properties in a Dual-Frequency Driven Sheath[J]. Chin. Phys. Lett., 2008, 25(4): 015203
[8] DAI Zhong-Ling, LIU Chuan-Sheng, WANG You-Nian. Comparison between Dual Radio Frequency- and Pulse-Driven Sheath near Insulating Substrates[J]. Chin. Phys. Lett., 2008, 25(2): 015203
[9] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 015203
[10] WANG Li-Hong, DAI Zhong-Ling, WANG You-Nian. Investigation of Dual Radio-Frequency Driven Sheaths and Ion Energy Distributions Bombarding an Insulating Substrate[J]. Chin. Phys. Lett., 2006, 23(3): 015203
[11] ZOU Xiu. Characteristics of Dust Plasma Sheath in an Oblique Magnetic Field[J]. Chin. Phys. Lett., 2006, 23(2): 015203
[12] WANG Zheng-Xiong, WANG Wen-Chun, LIU Yue, LIU Jin-Yuan, WANG Xiao-Gang. Dust Charging in the Sheath of an Electronegative Plasma[J]. Chin. Phys. Lett., 2004, 21(4): 015203
[13] MAO Ming, WANG You-Nian. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas[J]. Chin. Phys. Lett., 2004, 21(3): 015203
[14] LI Xue-Chun, WANG You-Nian. Secondary-Electron Emission Effects in Plasma Immersion Ion Implantation with Dielectric Substrates[J]. Chin. Phys. Lett., 2004, 21(2): 015203
[15] WANG Zheng-Xiong, LIU Jin-Yuan, ZOU Xiu, LIU Yue, WANG Xiao-Gang. Sheath Structure of an Electronegative Plasma[J]. Chin. Phys. Lett., 2003, 20(9): 015203
Viewed
Full text


Abstract