Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 010401    DOI: 10.1088/0256-307X/34/1/010401
GENERAL |
Effect of Phantom Dark Energy on Holographic Thermalization
Xiao-Xiong Zeng1,2, Xin-Yun Hu3**, Li-Fang Li4
1School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074
2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
3School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074
4State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li 2017 Chin. Phys. Lett. 34 010401
Download: PDF(571KB)   PDF(mobile)(560KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Holographic thermalization for a black hole surrounded by phantom dark energy is probed. The result shows that the smaller the phantom dark energy parameter is, the easier the is plasma to thermalize as the chemical potential is fixed, the larger the chemical potential is, and the harder the plasma is to thermalize as the dark energy parameter is fixed. The thermalization velocity and thermalization acceleration are presented by fitting the thermalization curves.
Received: 20 October 2016      Published: 29 December 2016
PACS:  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.25.dc (Numerical studies of critical behavior, singularities, and cosmic censorship)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405016 and 11365008, and the China Postdoctoral Science Foundation under Grant No 2016M590138.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/010401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/010401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xiong Zeng
Xin-Yun Hu
Li-Fang Li
[1]Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[2]Sonner J and Green A G 2012 Phys. Rev. Lett. 109 091601
[3]Li W J, Tian Y and Zhang H 2013 J. High Energy Phys. 1307 030
[4]Murata K, Kinoshita S and Tanahashi N 2010 J. High Energy Phys. 1007 050
[5]Ling Y, Niu C, Wu J, Xian Z and Zhang H 2014 Phys. Rev. Lett. 113 091602
[6]Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
[7]Cai R G and Yang R Q 2014 Phys. Rev. D 90 081901
[8]Mas J 2006 J. High Energy Phys. 0603 016
[9]Garfinkle D and Pando Z L A 2011 Phys. Rev. D 84 066006
[10]Garfinkle D, Pando Z L A and Reichmann D 2012 J. High Energy Phys. 1202 119
[11]Allais A and Tonni E 2012 J. High Energy Phys. 1201 102
[12]Das S R 2012 J. Phys.: Conf. Ser. 343 012027
[13]Steineder D, Stricker S A and Vuorinen A 2013 J. High Energy Phys. 1307 014
[14]Wu B 2012 J. High Energy Phys. 1210 133
[15]Gao X, Garcia-Garcia A M, Zeng H B and Zhang H Q 2014 J. High Energy Phys. 1406 019
[16]Buchel A, Lehner L, Myers R C and van Niekerk A 2013 J. High Energy Phys. 1305 067
[17]Keranen V, Keski-Vakkuri E and Thorlacius L 2012 Phys. Rev. D 85 026005
[18]Balasubramanian V et al 2011 Phys. Rev. Lett. 106 191601
[19]Balasubramanian V et al 2011 Phys. Rev. D 84 026010
[20]Baier R, Mueller A H, Schiff D and Son D 2001 Phys. Lett. B 502 51
[21]Galante D and Schvellinger M 2012 J. High Energy Phys. 1207 096
[22]Caceres E and Kundu A 2012 J. High Energy Phys. 1209 055
[23]Caceres E, Kundu A and Yang D L 2014 J. High Energy Phys. 1403 073
[24]Zeng X X and Liu W 2013 Phys. Lett. B 726 481
[25]Zeng X X, Liu X M and Liu W 2014 J. High Energy Phys. 1403 031
[26]Baron W H and Schvellinger M 2013 J. High Energy Phys. 1308 035
[27]Li Y Z, Wu S F and Yang G H 2013 Phys. Rev. D 88 086006
[28]Baron W 2013 J. High Energy Phys. 1303 070
[29]Arefeva I, Bagrov A and Koshelev A S 2013 J. High Energy Phys. 1307 170
[30]Hubeny V E, Rangamani M and Tonni E 2013 J. High Energy Phys. 1305 136
[31]Arefeva I Y and Volovich I V 2012 arXiv:1211.6041
[32]Belhaj A, Chabab M, El Moumni H and Sedra M B 2012 Chin. Phys. Lett. 29 100401
[33]Chen S B, Liu X F and Liu C Q 2013 Chin. Phys. Lett. 30 060401
[34]Balasubramanian V et al 2013 Phys. Rev. Lett. 111 231602
[35]Fonda P et al 2014 J. High Energy Phys. 1408 051
[36]Hubeny V E and Maxfield H 2014 J. High Energy Phys. 1403 097
[37]Zeng X X, Liu X M and Liu W 2015 Phys. Lett. B 744 48
[38]Giordano A, Grandi N E and Silva G A 2015 J. High Energy Phys. 1505 016
[39]Zhang S J, Wang B, Abdalla E and Papantonopoulos E 2015 Phys. Rev. D 91 106010
[40]Camilo G, Cuadros-Melgar B and Abdalla E 2015 J. High Energy Phys. 1502 103
[41]Buchel A, Myers R C and van Niekerk A 2015 J. High Energy Phys. 1507 137
[42]Zeng X X, Chen D Y and Li L F 2015 Phys. Rev. D 91 046005
[43]E Komatsu et al 2011 Astrophys. J. Suppl. Ser. 192 18
[44]Carroll S M, Hoffman M and Trodden M 2003 Phys. Rev. D 68 023509
[45]Hannestad S 2006 Int. J. Mod. Phys. A 21 1938
[46]Dunkley J et al 2009 Astrophys. J. Suppl. Ser. 180 306
[47]Gibbons G W and Rasheed D A 1996 Nucl. Phys. B 476 515
[48]Azreg-Aïnou M, Clément G, Fabris J C and Rodrigues M E 2011 Phys. Rev. D 83 124001
[49]Rodrigues M E and Oporto Z A A 2012 Phys. Rev. D 85 104022
[50]Azreg-Aïnou M 2013 Phys. Rev. D 87 024012
[51]Gyulchev G N and Zh S I 2013 Phys. Rev. D 87 063005
[52]Maldacena J M 1998 Phys. Rev. Lett. 80 4859
[53]Ling Y, Niu C, Wu J P and Xian Z Y 2013 J. High Energy Phys. 1311 006
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 010401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 010401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 010401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 010401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 010401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 010401
[7] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 010401
[8] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 010401
[9] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 010401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 010401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 010401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 010401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 010401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 010401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 010401
Viewed
Full text


Abstract