CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr$_{1-x}$Rh$_x$)$_4$O$_8$ |
Dong-Yi Wang1, Cheng Tan1, Kevin Huang1, Lei Shu1,2 |
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Dong-Yi Wang, Cheng Tan, Kevin Huang et al 2016 Chin. Phys. Lett. 33 127501 |
|
|
Abstract We perform a detailed investigation of the new 'breathing' pyrochlore compound LiInCr$_4$O$_8$ through Rh substitution with measurements of magnetic susceptibility, specific heat, and x-ray powder diffraction. The antiferromagnetic phase of LiInCr$_4$O$_8$ is found to be slowly suppressed with increasing Rh, up to the critical concentration of $x=0.1$ where the antiferromagnetic phase is still observed with the peak in specific heat $T_{\rm p}=12.5$ K, slightly lower than $T_{\rm p}=14.3$ K for the $x=0$ compound. From the measurements of magnetization we also uncover evidence that substitution increases the amount of frustration. Comparisons are made with the LiGa$_y$In$_{1-y}$Cr$_4$O$_8$ system as well as other frustrated pyrochlore-related materials and comparable amounts of frustration are found. The results of this work show that the engineered breathing pyrochlores present an important method to further understand the complex magnetism in frustrated systems.
|
|
Received: 11 August 2016
Published: 29 December 2016
|
|
|
|
Fund: Supported by the Ministry of Science and Technology under Grant No 2016YFA0300503. |
|
|
[1] | Gardner J S et al 2010 Rev. Mod. Phys. 82 53 | [2] | Bramwell S T and Gingras M J P 2001 Science 294 1495 | [3] | Raju N P et al 1992 Phys. Rev. B 46 5405 | [4] | Mandrus D et al 2001 Phys. Rev. B 63 195104 | [5] | Yang B J and Kim Y B 2010 Phys. Rev. B 82 085111 | [6] | Yonezawa S et al 2004 J. Phys. Soc. Jpn. 73 819 | [7] | Yonezawa S et al 2004 J. Phys. Soc. Jpn. 73 1655 | [8] | Yonezawa S et al 2004 J. Phys.: Condens. Matter 16 L9 | [9] | Gaertner H R 1930 Neues Jb. Mineralog. 61 1 | [10] | Greedan J E et al 1986 Solid State Commun. 59 895 | [11] | Sanders M B et al 2016 J. Mater. Chem. C 4 541 | [12] | Okamoto Y et al 2013 Phys. Rev. Lett. 110 097203 | [13] | Tanaka Y et al 2014 Phys. Rev. Lett. 113 227204 | [14] | Lee S et al 2016 Phys. Rev. B 93 174402 | [15] | Okamoto Y et al 2015 J. Phys. Soc. Jpn. 84 043707 | [16] | Martinho H, Moreno N O, Sanjurjo J A, Rettori C, Gar? ia-Adeva A J, Huber D L, Oseroff S B, Ratcliff I I W, Cheong S W, Pagliuso P G, Sarrao J L and Martins G B 2001 J. Appl. Phys. 89 7050 | [17] | Larson A C and Von Dreele R B 2004 General Structure Analysis System Los Alamos National Laboratory Report LAUR p 86 | [18] | Toby B H 2001 J. Appl. Crystallogr. 34 210 | [19] | Kimura K et al 2014 Phys. Rev. B 90 060414(R) | [20] | Hagemann I S et al 2001 Phys. Rev. Lett. 86 894 | [21] | Kanchanavatee N et al 2011 Phys. Rev. B 84 245122 | [22] | Recio J M et al 2001 Phys. Rev. B 63 184101 | [23] | Zhang L, Ji G F, Zhao F and Gong Z Z 2011 Chin. Phys. B 20 047102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|