Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 124207    DOI: 10.1088/0256-307X/33/12/124207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Single Mode Hybrid III–V/Silicon On-Chip Laser Based on Flip-Chip Bonding Technology for Optical Interconnection
Hai-Ling Wang1, Wan-Hua Zheng1,2**
1Laboratory of Solid State Optoelectronic Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Hai-Ling Wang, Wan-Hua Zheng 2016 Chin. Phys. Lett. 33 124207
Download: PDF(735KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A single mode hybrid III–V/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry–Pérot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AlGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3 mW, and the threshold is 37 mA at room temperature and continuous wave operation.
Received: 14 October 2016      Published: 29 December 2016
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB933501, and the National Natural Science Foundation of China under Grant Nos 61307033, 61274070, 61137003 and 61321063.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/124207       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/124207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Ling Wang
Wan-Hua Zheng
[1]Graham T R 2004 Nature 427 595
[2]Lockwood Dand Pavesi L 2010 Silicon Photonics II (Berlin: Springer)
[3]Thomson D, Zilkie A, Bowers J E et al 2016 J. Opt. 18 073003
[4]Rong H S, Jones R, Liu A S et al 2005 Nature 433 725
[5]Boyraz O and Jalali B 2004 Opt. Express 12 5269
[6]Pavesi L, Negro L D, Mazzoleni C et al 2000 Nature 408 440
[7]Hatori N, Shimizu T, Okano M et al 2014 J. Lightwave Technol. 32 1329
[8]Roelkens G, Thourhout D V and Baets R 2005 J. Lightwave Technol. 23 3827
[9]Chang H, Fang A W, Sysak M N et al 2007 4th IEEE Int. Conf. Group IV Photon. 19
[10]Sun X, Zadok A, Shearn M J et al 2009 Opt. Lett. 34 1345
[11]Wang Y, Wei Y, Huang Y et al 2011 Opt. Express 19 2006
[12]Zhang Y J, Qu H W, Wang H L et al 2013 Opt. Express 21 877
[13]Wang H L, Zhang Y J, Qu H W et al 2016 Conference on Lasers and Electro-Optics (Th2A.95 USA: San Jose)
[14]Tanaka S, Jeong S H, Sekiguchi S et al 2012 Opt. Express 20 28057
[15]Shimizu T, Hatori N, Okano M et al 2014 Photon. Res. 2 A19
[16]Lee J H, Bovington J, Shubin I et al 2015 Opt. Express 23 12079
[17]Zhang Y, Yang S, Guan H et al 2014 Opt. Express 22 17872
[18]Zilkie A J, Seddighian P, Bijlani B J et al 2012 Opt. Express 20 23456
[19]Kita T, Yamamoto N, Kawanishi T et al 2015 Appl. Phys. Express 8 062701
[20]Srinivasan S, Fang A W, Liang D et al 2011 Opt. Express 19 9255
[21]Duan G H, Christophe J, Liepvre A L et al 2014 IEEE J. Sel. Top. Quantum Electron. 20 6100213
[22]Tohmori Y, YoshikuniY, Ishii H et al 1993 IEEE J. Quantum Electron. 29 1817
[23]Merlier D J, Mizutani K, Sudo S et al 2005 IEEE Photon. Technol. Lett. 17 681
[24]Ebeling K J, Coldren L A, Miller B I et al 1982 Electron. Lett. 18 901
[25]O'Brien S and O'Reilly E P 2005 Appl. Phys. Lett. 86 201101
[26]Lu Q Y, Guo W H, Byrne D et al 2010 IEEE Photon. Technol. Lett. 22 787
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 124207
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 124207
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 124207
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 124207
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 124207
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 124207
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 124207
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 124207
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 124207
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 124207
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 124207
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 124207
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 124207
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 124207
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 124207
Viewed
Full text


Abstract