FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Single Mode Hybrid III–V/Silicon On-Chip Laser Based on Flip-Chip Bonding Technology for Optical Interconnection |
Hai-Ling Wang1, Wan-Hua Zheng1,2** |
1Laboratory of Solid State Optoelectronic Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
Hai-Ling Wang, Wan-Hua Zheng 2016 Chin. Phys. Lett. 33 124207 |
|
|
Abstract A single mode hybrid III–V/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry–Pérot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AlGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3 mW, and the threshold is 37 mA at room temperature and continuous wave operation.
|
|
Received: 14 October 2016
Published: 29 December 2016
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB933501, and the National Natural Science Foundation of China under Grant Nos 61307033, 61274070, 61137003 and 61321063. |
|
|
[1] | Graham T R 2004 Nature 427 595 | [2] | Lockwood Dand Pavesi L 2010 Silicon Photonics II (Berlin: Springer) | [3] | Thomson D, Zilkie A, Bowers J E et al 2016 J. Opt. 18 073003 | [4] | Rong H S, Jones R, Liu A S et al 2005 Nature 433 725 | [5] | Boyraz O and Jalali B 2004 Opt. Express 12 5269 | [6] | Pavesi L, Negro L D, Mazzoleni C et al 2000 Nature 408 440 | [7] | Hatori N, Shimizu T, Okano M et al 2014 J. Lightwave Technol. 32 1329 | [8] | Roelkens G, Thourhout D V and Baets R 2005 J. Lightwave Technol. 23 3827 | [9] | Chang H, Fang A W, Sysak M N et al 2007 4th IEEE Int. Conf. Group IV Photon. 19 | [10] | Sun X, Zadok A, Shearn M J et al 2009 Opt. Lett. 34 1345 | [11] | Wang Y, Wei Y, Huang Y et al 2011 Opt. Express 19 2006 | [12] | Zhang Y J, Qu H W, Wang H L et al 2013 Opt. Express 21 877 | [13] | Wang H L, Zhang Y J, Qu H W et al 2016 Conference on Lasers and Electro-Optics (Th2A.95 USA: San Jose) | [14] | Tanaka S, Jeong S H, Sekiguchi S et al 2012 Opt. Express 20 28057 | [15] | Shimizu T, Hatori N, Okano M et al 2014 Photon. Res. 2 A19 | [16] | Lee J H, Bovington J, Shubin I et al 2015 Opt. Express 23 12079 | [17] | Zhang Y, Yang S, Guan H et al 2014 Opt. Express 22 17872 | [18] | Zilkie A J, Seddighian P, Bijlani B J et al 2012 Opt. Express 20 23456 | [19] | Kita T, Yamamoto N, Kawanishi T et al 2015 Appl. Phys. Express 8 062701 | [20] | Srinivasan S, Fang A W, Liang D et al 2011 Opt. Express 19 9255 | [21] | Duan G H, Christophe J, Liepvre A L et al 2014 IEEE J. Sel. Top. Quantum Electron. 20 6100213 | [22] | Tohmori Y, YoshikuniY, Ishii H et al 1993 IEEE J. Quantum Electron. 29 1817 | [23] | Merlier D J, Mizutani K, Sudo S et al 2005 IEEE Photon. Technol. Lett. 17 681 | [24] | Ebeling K J, Coldren L A, Miller B I et al 1982 Electron. Lett. 18 901 | [25] | O'Brien S and O'Reilly E P 2005 Appl. Phys. Lett. 86 201101 | [26] | Lu Q Y, Guo W H, Byrne D et al 2010 IEEE Photon. Technol. Lett. 22 787 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|