GENERAL |
|
|
|
|
Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors |
Guang-Zhao Tang1, Shi-Hai Sun1**, Huan Chen1, Chun-Yan Li1, Lin-Mei Liang2** |
1College of Science, National University of Defense Technology, Changsha 410073 2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
|
|
Cite this article: |
Guang-Zhao Tang, Shi-Hai Sun, Huan Chen et al 2016 Chin. Phys. Lett. 33 120301 |
|
|
Abstract Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of $\frac{3}{4}$ loss in the final key for the incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the $Z$-basis and 26.2% in the $X$-basis.
|
|
Received: 12 August 2016
Published: 29 December 2016
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
89.70.Cf
|
(Entropy and other measures of information)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11304391, 11674397 and 61671455, and the Program for New Century Excellent Talents in University of China. |
|
|
[1] | Bennett C H and Brassard G 1984 Int. Conf. Comput. Syst. Signal Process (Bangalore India) (New York: IEEE) p 175 | [2] | Ekert A K 1991 Phys. Rev. Lett. 67 661 | [3] | Huang Y X, Hu H P, Liang R S, Lu Y Q, Wang J D and Lu W 2008 Chin. Phys. Lett. 25 2485 | [4] | Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547 | [5] | Yuan Z L, Dixon A R, Dynes J F, Sharpe A W and Shields A J 2008 Appl. Phys. Lett. 92 201104 | [6] | Han J J, Sun S H and Liang L M 2011 Chin. Phys. Lett. 28 040303 | [7] | Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008 | [8] | Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333 | [9] | Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686 | [10] | Sun S H, Jiang M S and Liang L M 2011 Phys. Rev. A 83 062331 | [11] | Jain N, Wittmann C, Lydersen L, Wiechers C et al 2011 Phys. Rev. Lett. 107 110501 | [12] | Yuan Z L, Dynes J F and Shields A J 2010 Nat. Photon. 4 800 | [13] | Sun S H, Xu F H, Jiang M S, Ma X C, Lo H K and Liang L M 2015 Phys. Rev. A 92 022304 | [14] | Ací n A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501 | [15] | Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501 | [16] | Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 | [17] | Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501 | [18] | Liu Y, Chen T Y, Wang L J et al 2013 Phys. Rev. Lett. 111 130502 | [19] | Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503 | [20] | Tang Y L, Hua H L, Chen S J et al 2014 Phys. Rev. Lett. 113 190501 | [21] | Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502 | [22] | Ma X, Razavi M 2012 Phys. Rev. A 86 062319 | [23] | Lucio-Martinez I, Chan P, Mo X, Hosier S and Tittel W 2009 New J. Phys. 11 095001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|