Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 120201    DOI: 10.1088/0256-307X/33/12/120201
GENERAL |
Wigner-Matrix-Based Normality Test and Application to Weak Signal Detection in SISO/SIMO Systems
Jun Chen, Fei Wang, Jian-Jiang Zhou**
Key Laboratory of Radar Imaging and Microwave Photonics (Ministry of Education), Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article:   
Jun Chen, Fei Wang, Jian-Jiang Zhou 2016 Chin. Phys. Lett. 33 120201
Download: PDF(450KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) of eigenvalues of the Wigner matrix is deduced. A numerical Kullback–Leibler divergence of the empirical spectral CDF based on test samples from the deduced asymptotic CDF is established, which is treated as the test statistic. For validating the superiority of our proposed normality test, we apply the method to weak 8PSK signal detection in the single-input single-output (SISO) system and the single-input multiple-output (SIMO) system. By comparing with other common normality tests and the existing signal detection methods, simulation results show that the proposed method is superior and robust.
Received: 15 June 2016      Published: 29 December 2016
PACS:  02.10.Yn (Matrix theory)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61371170, the Fundamental Research Funds for the Central Universities under Grant Nos NP2015404 and NS2016038, the Aeronautical Science Foundation of China under Grant No 20152052028, and the Funding of Jiangsu Innovation Program for Graduate Education under Grant No KYLX15_0282.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/120201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Chen
Fei Wang
Jian-Jiang Zhou
[1]Machiwal D and Jha M K 2012 Hydrologic Time Series Analysis: Theory and Practice (New Delhi: Springer) chap 3 p 42
[2]Tumminello M et al 2007 Phys. Rev. E 76 031123
[3]Lu L et al 2013 IEEE Trans. Wireless Commun. 12 2400
[4]Bai Z and Silverstein J W 2010 Spectral Analysis of Large Dimensional Random Matrices 2nd edn (New York: Springer) chap 2 p 15
[5]Chen J et al 2015 IEEE Int. Symp. Inf. Theory (Hong Kong China 14–19 June 2015) p 331
[6]Takami T and Fujisaki H 2007 Phys. Rev. E 75 036219
[7]Yang S and Zhai H 2002 Chin. Phys. Lett. 19 628
[8]Livan G et al 2011 Phys. Rev. E 84 016113
[9]Conlon T et al 2007 Physica A 382 565
[10]Wazir Z 2011 Chin. Phys. Lett. 28 092503
[11]Couillet R and Debbah M 2011 Random Matrix Methods For Wireless Communications (New York: Cambridge University Press) chap 16 p 393
[12]Zeng Y and Liang Y 2009 IEEE Trans. Commun. 57 1784
[13]Dahiya R C and Gurland J 1973 J. Amn Stat. Assoc. 68 707
Related articles from Frontiers Journals
[1] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Numerical Solution of Range-Dependent Acoustic Propagation[J]. Chin. Phys. Lett., 2013, 30(7): 120201
[2] YAN Yan, LIU Mao-Xin, ZHU Xiao-Wu, CHEN Xiao-Song. Principle Fluctuation Modes of the Global Stock Market[J]. Chin. Phys. Lett., 2012, 29(2): 120201
[3] YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping[J]. Chin. Phys. Lett., 2002, 19(5): 120201
Viewed
Full text


Abstract