CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes |
Feng Dai1,2, Xue-Feng Zheng1**, Pei-Xian Li1, Xiao-Hui Hou3, Ying-Zhe Wang1, Yan-Rong Cao1,2, Xiao-Hua Ma1, Yue Hao1 |
1Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 2School of Mechano-electronic Engineering, Xidian University, Xi'an 710071 3School of Computer Science and Technology, Xidian University, Xi'an 710071
|
|
Cite this article: |
Feng Dai, Xue-Feng Zheng, Pei-Xian Li et al 2016 Chin. Phys. Lett. 33 117301 |
|
|
Abstract The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380 nm) are investigated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole–Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole–Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05 eV, 0.09 eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.
|
|
Received: 25 July 2016
Published: 28 November 2016
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61334002, 61474091, 61404097, 61574110 and 61574112, the 111 Project of China under Grant No B12026, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of China under Grant No JY0600132501. |
|
|
[1] | Cao X A, Sandivk P M, LeBoeuf S F and Arthur S D 2003 Microelectron. Reliab. 43 1987 | [2] | Hirsch L and Barrière A S 2003 J. Appl. Phys. 94 5014 | [3] | Cao X A, Teetsov J M, D'Evelyn M P, Merfeld D W and Yan C H 2004 Appl. Phys. Lett. 85 7 | [4] | Khan M A, Shatalov M, Maruska H P, Wang H M and Koukstis E 2005 Jpn. J. Appl. Phys. 44 7191 | [5] | Shan Q F, Meyaard D S, Dai Q, Cho J, Schubert E F, Son J K and Sone C L 2011 Appl. Phys. Lett. 99 253506 | [6] | Kim J, Kim J Y, Tak Y, Kim J, Hong H G, Yang M, Chae S, Park J, Park Y and Chung U I 2012 IEEE Electron Device Lett. 33 1741 | [7] | Kim K S, Kim J H and Cho S N 2011 IEEE Photon. Technol. Lett. 23 483 | [8] | Han D P, Oh C H, Kim H, Shim J I, Kim K S and Shin D S 2015 IEEE Trans. Electron Devices 62 587 | [9] | Ferdous M S, Wang X, Fairchild M N and Hersee S D 2007 Appl. Phys. Lett. 91 231107 | [10] | Menehini M, Trivellin N, Pavesi M, Manfredi M, Zehnder U, Hahn B, Meneghesso G and Zanoni E 2009 Appl. Phys. Lett. 95 173507 | [11] | González G 2015 J. Appl. Phys. 117 084306 | [12] | Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang A, Park M and Das K 2010 Phys. Status Solidi A 207 1489 | [13] | Kuksenkov D V, Temkin H, Osinsky A, Gaska R and Khan M A 1998 Appl. Phys. Lett. 72 1365 | [14] | Musolino M, van Treeck D, Tahraoui A, Scarparo L, De Santi C, Meneghini M, Zanoni E, Geelhaar L and Riechert H 2016 J. Appl. Phys. 119 044502 | [15] | Simmons J G 1967 Phys. Rev. 155 657 | [16] | Mao A, Cho J, Dai Q, Schubert E F, Son J K and Park Y 2011 Appl. Phys. Lett. 98 023503 | [17] | Kim J, Kim J, Tak Y, Chae S, Kim J Y and Park Y 2013 IEEE Electron Device Lett. 34 1409 | [18] | Mazzola M S, Saddow S E, Neudeck P G, Lakdawala V K and We S 1994 Appl. Phys. Lett. 64 2730 | [19] | Venturi G, Castaldini A, Cavallini A, Meneghini M, Zanoni E, Zhu D and Humphreys C 2014 Appl. Phys. Lett. 104 211102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|