Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117301    DOI: 10.1088/0256-307X/33/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes
Feng Dai1,2, Xue-Feng Zheng1**, Pei-Xian Li1, Xiao-Hui Hou3, Ying-Zhe Wang1, Yan-Rong Cao1,2, Xiao-Hua Ma1, Yue Hao1
1Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
2School of Mechano-electronic Engineering, Xidian University, Xi'an 710071
3School of Computer Science and Technology, Xidian University, Xi'an 710071
Cite this article:   
Feng Dai, Xue-Feng Zheng, Pei-Xian Li et al  2016 Chin. Phys. Lett. 33 117301
Download: PDF(526KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380 nm) are investigated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole–Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole–Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05 eV, 0.09 eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.
Received: 25 July 2016      Published: 28 November 2016
PACS:  73.61.Ey (III-V semiconductors)  
  85.60.Jb (Light-emitting devices)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61334002, 61474091, 61404097, 61574110 and 61574112, the 111 Project of China under Grant No B12026, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of China under Grant No JY0600132501.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng Dai
Xue-Feng Zheng
Pei-Xian Li
Xiao-Hui Hou
Ying-Zhe Wang
Yan-Rong Cao
Xiao-Hua Ma
Yue Hao
[1]Cao X A, Sandivk P M, LeBoeuf S F and Arthur S D 2003 Microelectron. Reliab. 43 1987
[2]Hirsch L and Barrière A S 2003 J. Appl. Phys. 94 5014
[3]Cao X A, Teetsov J M, D'Evelyn M P, Merfeld D W and Yan C H 2004 Appl. Phys. Lett. 85 7
[4]Khan M A, Shatalov M, Maruska H P, Wang H M and Koukstis E 2005 Jpn. J. Appl. Phys. 44 7191
[5]Shan Q F, Meyaard D S, Dai Q, Cho J, Schubert E F, Son J K and Sone C L 2011 Appl. Phys. Lett. 99 253506
[6]Kim J, Kim J Y, Tak Y, Kim J, Hong H G, Yang M, Chae S, Park J, Park Y and Chung U I 2012 IEEE Electron Device Lett. 33 1741
[7]Kim K S, Kim J H and Cho S N 2011 IEEE Photon. Technol. Lett. 23 483
[8]Han D P, Oh C H, Kim H, Shim J I, Kim K S and Shin D S 2015 IEEE Trans. Electron Devices 62 587
[9]Ferdous M S, Wang X, Fairchild M N and Hersee S D 2007 Appl. Phys. Lett. 91 231107
[10]Menehini M, Trivellin N, Pavesi M, Manfredi M, Zehnder U, Hahn B, Meneghesso G and Zanoni E 2009 Appl. Phys. Lett. 95 173507
[11]González G 2015 J. Appl. Phys. 117 084306
[12]Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang A, Park M and Das K 2010 Phys. Status Solidi A 207 1489
[13]Kuksenkov D V, Temkin H, Osinsky A, Gaska R and Khan M A 1998 Appl. Phys. Lett. 72 1365
[14]Musolino M, van Treeck D, Tahraoui A, Scarparo L, De Santi C, Meneghini M, Zanoni E, Geelhaar L and Riechert H 2016 J. Appl. Phys. 119 044502
[15]Simmons J G 1967 Phys. Rev. 155 657
[16]Mao A, Cho J, Dai Q, Schubert E F, Son J K and Park Y 2011 Appl. Phys. Lett. 98 023503
[17]Kim J, Kim J, Tak Y, Chae S, Kim J Y and Park Y 2013 IEEE Electron Device Lett. 34 1409
[18]Mazzola M S, Saddow S E, Neudeck P G, Lakdawala V K and We S 1994 Appl. Phys. Lett. 64 2730
[19]Venturi G, Castaldini A, Cavallini A, Meneghini M, Zanoni E, Zhu D and Humphreys C 2014 Appl. Phys. Lett. 104 211102
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 117301
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 117301
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 117301
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 117301
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 117301
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 117301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 117301
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 117301
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 117301
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 117301
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 117301
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 117301
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 117301
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 117301
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 117301
Viewed
Full text


Abstract