GENERAL |
|
|
|
|
A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space |
Bing-Sheng Lin1**, Tai-Hua Heng2 |
1School of Mathematics, South China University of Technology, Guangzhou 510641 2School of Physics and Material Science, Anhui University, Hefei 230601
|
|
Cite this article: |
Bing-Sheng Lin, Tai-Hua Heng 2016 Chin. Phys. Lett. 33 110303 |
|
|
Abstract We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.
|
|
Received: 13 August 2016
Published: 28 November 2016
|
|
PACS: |
03.65.Fd
|
(Algebraic methods)
|
|
02.40.Gh
|
(Noncommutative geometry)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405060 and 11571119. |
|
|
[1] | Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032 | [2] | Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977 | [3] | Chaichian M, Presnajder P and Tureanu A 2005 Phys. Rev. Lett. 94 151602 | [4] | Ettefaghi M M and Haghighat M 2008 Phys. Rev. D 77 056009 | [5] | Mutallip T, Sayipjamal D and Li K 2010 Commun. Theor. Phys. 54 43 | [6] | Yan L, Feng X L, Zhang Z M and Liu S H 2012 Chin. Phys. Lett. 29 041102 | [7] | Vitale P and Wallet J 2013 J. High Energy Phys. 1304 115 | [8] | Kupriyanov V G 2014 Phys. Lett. B 732 385 | [9] | Lin B S, Heng T H and Chen W 2014 Commun. Theor. Phys. 61 605 | [10] | Diao X F, Long C Y, Kong B and Long Z W 2015 Chin. Phys. Lett. 32 040301 | [11] | Snyder H S 1947 Phys. Rev. 71 38 | [12] | Connes A 1994 Noncommutative Geometry (New York: Academic Press) | [13] | Doplicher S, Fredenhagen K and Roberts J E 1994 Phys. Lett. B 331 39 | [14] | Zupnik B M 2007 Class. Quantum Grav. 24 15 | [15] | Polychronakos A P 2001 J. High Energy Phys. 0106 070 | [16] | Gomis J and Mehen T 2000 Nucl. Phys. B 591 265 | [17] | Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267 | [18] | Zhang J Z 2004 Phys. Lett. B 584 204 | [19] | Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165 | [20] | Vakili B, Khosravi N and Sepangi H R 2007 Class. Quantum Grav. 24 931 | [21] | Bastos C, Bertolami O, Dias N C and Prata J N 2008 Phys. Rev. D 78 023516 | [22] | Lin B S and Heng T H 2011 Chin. Phys. Lett. 28 070303 | [23] | Jing S C, Tao L P, Liu Q Y and Ruan T N 2006 Commun. Theor. Phys. 45 249 | [24] | Lin B S and Jing S C 2008 Phys. Lett. A 372 4880 | [25] | Ben Geloun J and Scholtz F G 2009 J. Math. Phys. 50 043505 | [26] | Greub W H 1967 Linear Algebra (New York: Springer-Verlag) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|