Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110303    DOI: 10.1088/0256-307X/33/11/110303
GENERAL |
A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space
Bing-Sheng Lin1**, Tai-Hua Heng2
1School of Mathematics, South China University of Technology, Guangzhou 510641
2School of Physics and Material Science, Anhui University, Hefei 230601
Cite this article:   
Bing-Sheng Lin, Tai-Hua Heng 2016 Chin. Phys. Lett. 33 110303
Download: PDF(275KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.
Received: 13 August 2016      Published: 28 November 2016
PACS:  03.65.Fd (Algebraic methods)  
  02.40.Gh (Noncommutative geometry)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405060 and 11571119.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-Sheng Lin
Tai-Hua Heng
[1]Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032
[2]Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977
[3]Chaichian M, Presnajder P and Tureanu A 2005 Phys. Rev. Lett. 94 151602
[4]Ettefaghi M M and Haghighat M 2008 Phys. Rev. D 77 056009
[5]Mutallip T, Sayipjamal D and Li K 2010 Commun. Theor. Phys. 54 43
[6]Yan L, Feng X L, Zhang Z M and Liu S H 2012 Chin. Phys. Lett. 29 041102
[7]Vitale P and Wallet J 2013 J. High Energy Phys. 1304 115
[8]Kupriyanov V G 2014 Phys. Lett. B 732 385
[9]Lin B S, Heng T H and Chen W 2014 Commun. Theor. Phys. 61 605
[10]Diao X F, Long C Y, Kong B and Long Z W 2015 Chin. Phys. Lett. 32 040301
[11]Snyder H S 1947 Phys. Rev. 71 38
[12]Connes A 1994 Noncommutative Geometry (New York: Academic Press)
[13]Doplicher S, Fredenhagen K and Roberts J E 1994 Phys. Lett. B 331 39
[14]Zupnik B M 2007 Class. Quantum Grav. 24 15
[15]Polychronakos A P 2001 J. High Energy Phys. 0106 070
[16]Gomis J and Mehen T 2000 Nucl. Phys. B 591 265
[17]Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[18]Zhang J Z 2004 Phys. Lett. B 584 204
[19]Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165
[20]Vakili B, Khosravi N and Sepangi H R 2007 Class. Quantum Grav. 24 931
[21]Bastos C, Bertolami O, Dias N C and Prata J N 2008 Phys. Rev. D 78 023516
[22]Lin B S and Heng T H 2011 Chin. Phys. Lett. 28 070303
[23]Jing S C, Tao L P, Liu Q Y and Ruan T N 2006 Commun. Theor. Phys. 45 249
[24]Lin B S and Jing S C 2008 Phys. Lett. A 372 4880
[25]Ben Geloun J and Scholtz F G 2009 J. Math. Phys. 50 043505
[26]Greub W H 1967 Linear Algebra (New York: Springer-Verlag)
Related articles from Frontiers Journals
[1] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[2] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 110303
[3] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 110303
[4] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 110303
[5] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 110303
[6] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 110303
[7] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 110303
[8] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 110303
[9] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 110303
[10] M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi. Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta[J]. Chin. Phys. Lett., 2012, 29(8): 110303
[11] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 110303
[12] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 110303
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110303
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 110303
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 110303
Viewed
Full text


Abstract