CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric |
Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv**, Zhi-Hong Feng** |
National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051
|
|
Cite this article: |
Xin Tan, Xing-Ye Zhou, Hong-Yu Guo et al 2016 Chin. Phys. Lett. 33 098501 |
|
|
Abstract AlGaN/GaN fin-shaped metal-oxide-semiconductor high-electron-mobility transistors (fin-MOSHEMTs) with different fin widths (300 nm and 100 nm) on sapphire substrates are fabricated and characterized. High-quality self-aligned Al$_{2}$O$_{3}$ gate dielectric underneath an 80-nm T-shaped gate is employed by aluminum self-oxidation, which induces 4 orders of magnitude reduction in the gate leakage current. Compared with conventional planar MOSHEMTs, short channel effects of the fabricated fin-MOSHEMTs are significantly suppressed due to the tri-gate structure, and excellent dc characteristics are obtained, such as extremely flat output curves, smaller drain induced barrier lower, smaller subthreshold swing, more positive threshold voltage, higher transconductance and higher breakdown voltage.
|
|
Received: 05 April 2016
Published: 30 September 2016
|
|
PACS: |
85.30.-z
|
(Semiconductor devices)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Christian H 2011 AlGaN/GaN-based Millimeter-Wave High Electron Mobility Transistors (Stuttgart: Fraunhofer Verlag) chap 6 | [2] | Sze S M and Kwok K N G 2006 Physics of Semiconductor Devices (London: Wiley) chap 7 | [3] | Yu B, Chang L, Ahmed, Wang H, Chang L, Ahmed S, Wang H H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C M, Lin M R and Kyser D 2002 Int. Electron. Devices Meeting (San Francisco 8–11 December 2002) p 251 | [4] | Doyle B S, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R and Chau R 2003 IEEE Electron Device Lett. 24 263 | [5] | Kim T W, Kim D H, Kohn D H and Kwon H M 2013 Int. Electron. Devices Meeting (Washington DC 9–11 December 2013) p 425 | [6] | Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom D A and Lieber C M 2006 Nano Lett. 6 1468 | [7] | Ohi K and Hashizume T 2009 Jpn. J. Appl. Phys. 48 081002 | [8] | Liu S, Cai Y, Gong R M, Wang J Y, Zeng C H, Shi W H, Feng Z H, Wang J J, Yin J Y and Cheng P W 2011 Chin. Phys. Lett. 28 077202 | [9] | Lu B, Elison M and Tomas P 2012 IEEE Electron Device Lett. 33 360 | [10] | Im K S, Kim R H, Kim K W, Kim D S, Lee C S, Cristoloveanu S and Lee J H 2013 IEEE Electron Device Lett. 34 27 | [11] | Lee D S, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson J W, Beam E, Ketterson A, Schuette M, Paul S and Tomás P 2013 IEEE Electron Device Lett. 34 969 | [12] | Arulkumaran S, Ng G I, Manojkumar C M, Ranjan K, Teo K L, Shoron O F, Rajan S, Dolmanan S B and Tripathy S 2014 Int. Electron. Devices Meeting (San Francisco 15–17 December 2014) p 594 | [13] | Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|