Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 098502    DOI: 10.1088/0256-307X/33/9/098502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling
Qiu-Xue Jin1,2, Bo Liu1**, Yan Liu1, Wei-Wei Wang1,2, Heng Wang1,2, Zhen Xu1,2, Dan Gao1,2, Qing Wang1,2, Yang-Yang Xia1,2, Zhi-Tang Song1, Song-Lin Feng1
1State Key Laboratory of Functional Materials for Informatics and Nanotechnology Laboratory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Qiu-Xue Jin, Bo Liu, Yan Liu et al  2016 Chin. Phys. Lett. 33 098502
Download: PDF(655KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67 mA to 0.32 mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
Received: 17 May 2016      Published: 30 September 2016
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  83.10.Tv (Structural and phase changes)  
  81.05.Gc (Amorphous semiconductors)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/098502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/098502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiu-Xue Jin
Bo Liu
Yan Liu
Wei-Wei Wang
Heng Wang
Zhen Xu
Dan Gao
Qing Wang
Yang-Yang Xia
Zhi-Tang Song
Song-Lin Feng
[1]Lai S 2003 IEDM Tech. Dig. 255
[2]Motoyasu T, Takahiro M and Takeo O 2009 Jpn. J. Appl. Phys. 48 080001
[3]Burr G W, Breitwisch M J, Franceschini M et al 2010 J. Vac. Sci. Technol. B 28 223
[4]Yamada N, Ohno E, Nishiuchi K et al 1991 J. Appl. Phys. 69 2849
[5]Liu B, Song Z T, Feng S L et al 2005 Chin. Phys. Lett. 22 758
[6]Wuttig M and Yamada N 2007 Nat. Mater. 6 824
[7]Zhang X, Liu B, Peng C et al 2012 Chin. Phys. Lett. 29 0107201
[8]Gong Y F, Ling Y, Song Z T et al 2008 Chin. Phys. Lett. 25 3455
[9]Kang D H, Ahn D H, Kim K B et al 2003 J. Appl. Phys. 94 3536
[10]Kim Y T, Hwang Y N, Lee K H et al 2005 Jpn. J. Appl. Phys. 44 2701
[11]Yin Y, Sone H and Hosaka S 2006 Jpn. J. Appl. Phys. 45 6177
[12]Kang D H, Kim L H, Jeong J et al 2006 J. Appl. Phys. 100 54506
[13]Faraclas A, Williams N, Dirisaglik F et al 2012 IEEE Comput. Soc. Annu. Symp. VLSI 78
[14]Zhang Y, Feng J, Wang H et al 2005 Jpn. J. Appl. Phys. 44 1687
[15]Peng C, Cheng L and Mansuripur M 1997 J. Appl. Phys. 82 4183
[16]Gidon S, Lemonnier O, Rolland B et al 1999 Appl. Phys. 85 6392
[17]Reifenberg J, Pop E, Gibby A, Wong S et al 2006 10th Intersociety Conf. ITHERM 106
[18]Azer F, Nicholas W, Ali G et al 2011 IEEE Electron Device Lett. 32 1737
[19]Liu Y, Song Z T, Ling Y et al 2010 Chin. Phys. Lett. 27 038502
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 098502
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 098502
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 098502
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 098502
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 098502
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 098502
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098502
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 098502
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098502
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 098502
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 098502
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 098502
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 098502
[14] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 098502
[15] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 098502
Viewed
Full text


Abstract