CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling |
Qiu-Xue Jin1,2, Bo Liu1**, Yan Liu1, Wei-Wei Wang1,2, Heng Wang1,2, Zhen Xu1,2, Dan Gao1,2, Qing Wang1,2, Yang-Yang Xia1,2, Zhi-Tang Song1, Song-Lin Feng1 |
1State Key Laboratory of Functional Materials for Informatics and Nanotechnology Laboratory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Qiu-Xue Jin, Bo Liu, Yan Liu et al 2016 Chin. Phys. Lett. 33 098502 |
|
|
Abstract An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67 mA to 0.32 mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
|
|
Received: 17 May 2016
Published: 30 September 2016
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
83.10.Tv
|
(Structural and phase changes)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
44.10.+i
|
(Heat conduction)
|
|
|
|
|
[1] | Lai S 2003 IEDM Tech. Dig. 255 | [2] | Motoyasu T, Takahiro M and Takeo O 2009 Jpn. J. Appl. Phys. 48 080001 | [3] | Burr G W, Breitwisch M J, Franceschini M et al 2010 J. Vac. Sci. Technol. B 28 223 | [4] | Yamada N, Ohno E, Nishiuchi K et al 1991 J. Appl. Phys. 69 2849 | [5] | Liu B, Song Z T, Feng S L et al 2005 Chin. Phys. Lett. 22 758 | [6] | Wuttig M and Yamada N 2007 Nat. Mater. 6 824 | [7] | Zhang X, Liu B, Peng C et al 2012 Chin. Phys. Lett. 29 0107201 | [8] | Gong Y F, Ling Y, Song Z T et al 2008 Chin. Phys. Lett. 25 3455 | [9] | Kang D H, Ahn D H, Kim K B et al 2003 J. Appl. Phys. 94 3536 | [10] | Kim Y T, Hwang Y N, Lee K H et al 2005 Jpn. J. Appl. Phys. 44 2701 | [11] | Yin Y, Sone H and Hosaka S 2006 Jpn. J. Appl. Phys. 45 6177 | [12] | Kang D H, Kim L H, Jeong J et al 2006 J. Appl. Phys. 100 54506 | [13] | Faraclas A, Williams N, Dirisaglik F et al 2012 IEEE Comput. Soc. Annu. Symp. VLSI 78 | [14] | Zhang Y, Feng J, Wang H et al 2005 Jpn. J. Appl. Phys. 44 1687 | [15] | Peng C, Cheng L and Mansuripur M 1997 J. Appl. Phys. 82 4183 | [16] | Gidon S, Lemonnier O, Rolland B et al 1999 Appl. Phys. 85 6392 | [17] | Reifenberg J, Pop E, Gibby A, Wong S et al 2006 10th Intersociety Conf. ITHERM 106 | [18] | Azer F, Nicholas W, Ali G et al 2011 IEEE Electron Device Lett. 32 1737 | [19] | Liu Y, Song Z T, Ling Y et al 2010 Chin. Phys. Lett. 27 038502 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|