CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Synthesis of Ordered Ultra-long Manganite Nanowires via Electrospinning Method |
Jun Zheng1, Kai Du1, Di Xiao1, Zheng-Yang Zhou1, Wen-Gang Wei1,2, Jin-Jie Chen1, Li-Feng Yin1,3**, Jian Shen1,3** |
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 2College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Jun Zheng, Kai Du, Di Xiao et al 2016 Chin. Phys. Lett. 33 097501 |
|
|
Abstract We develop a new electrospinning method to prepare ultra-long ordered La$_{1-x}$Sr$_{x}$MnO$_{3}$ (LSMO) nanowires. The length is up to several centimeters and is only limited by the size of the collector. The well-ordered straight-line structure ensures the transport measurement, which is impossible to be carried out for the random nanowires fabricated by the traditional electrospinning method. Magnetic and transport measurements indicate that the physical properties of the LSMO nanowires depend sensitively on the doping concentration. At the optimum doping, the LSMO wires are ferromagnetic at room temperature with a metal-insulator transition temperature close to room temperature. Magnetic force microscopy studies are also performed to provide a microscopic view of these ultra-long nanowires.
|
|
Received: 06 March 2016
Published: 30 September 2016
|
|
PACS: |
75.47.Lx
|
(Magnetic oxides)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Zhai H Y et al 2006 Phys. Rev. Lett. 97 167201 | [2] | Singh-Bhalla G et al 2009 Phys. Rev. Lett. 102 077205 | [3] | Ward T Z et al 2009 Phys. Rev. Lett. 102 087201 | [4] | Roosen D et al 2008 Phys. Rev. Lett. 100 087201 | [5] | Du K et al 2015 Nat. Commun. 6 6179 | [6] | Xu K and Heath J R 2008 Nano Lett. 8 3845 | [7] | Xia Y et al 2003 Adv. Mater. 15 353 | [8] | Wang Z L 2004 Annu. Rev. Phys. Chem. 55 159 | [9] | Shen J et al 2013 Chin. Phys. B 22 017501 | [10] | Li D et al 2003 Nano Lett. 3 1167 | [11] | Li L et al 2013 Solid State Commun. 171 46 | [12] | Wu H, Pan W, Lin D D and Li H P 2012 J. Adv. Ceram. 1 2 | [13] | Jugdersuren B, Kang S, DiPietro R S, Heiman D, McKeown D, Pegg I L and Philip J 2011 J. Appl. Phys. 109 016109 | [14] | Wu H, Sun Y, Lin D D, Zhang R, Zhang C and Pan W 2009 Adv. Mater. 21 227 | [15] | Zhang R, Wu H, Lin D D and Pan W 2009 J. Am. Ceram. Soc. 92 2463 | [16] | Mai L Q, Xu L, Han C H, Xu X, Luo Y Z, Zhao S Y and Zhao Y L 2010 Nano Lett. 10 4750 | [17] | Guo H W, Noh Joo H, Dong S, Rack P D, Gai Z, Xu X S, Dagotto E, Shen J and Ward T Z 2013 Nano Lett. 13 3749 | [18] | Jang J W, Lee C E, Lyu S C, Lee T J and Lee C J 2004 Appl. Phys. Lett. 84 2877 | [19] | Tan J S, Long Y Z and Li M M 2008 Chin. Phys. Lett. 25 3067 | [20] | Yarin A L, Koombhongse S and Reneker D H 2001 J. Appl. Phys. 89 3018 | [21] | Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103 | [22] | Cui B, Song C, Mao H J, Wu H Q, Li F, Peng J J, Wang G Y, Zeng F and Pan F 2015 Adv. Mater. 27 6651 | [23] | Cui B, Song C, Gehring G A, Li F, Wang G Y, Chen C, Peng J J, Mao H J, Zeng F and Pan F 2015 Adv. Funct. Mater. 25 864 | [24] | Kourkoutis L F, Song J H, Hwang H Y and Muller D A 2010 Proc. Natl. Acad. Sci. USA 107 11682 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|