Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 088503    DOI: 10.1088/0256-307X/33/8/088503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer
Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin
Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384
Cite this article:   
Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi et al  2016 Chin. Phys. Lett. 33 088503
Download: PDF(688KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes. As an exciton feedback layer (EFL), the BAlq does not act as a traditional hole blocking effect. The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface. Meanwhile, the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation, which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices. Accordingly, the optimal device presents the improved performances with the maximum current efficiency of 4.2 cd/A and the luminance of 24600 cd/m$^{2}$, which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL, respectively. Simultaneously, the device shows an excellent color stability with a tiny offset of the CIE coordinates ($\Delta x=\pm0.003$, $\Delta y=\pm0.004$) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V.
Received: 10 March 2016      Published: 31 August 2016
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  87.64.kv (Fluorescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/088503       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/088503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qian-Qian Yu
Xu Zhang
Jing-Xuan Bi
Guan-Ting Liu
Qi-Wen Zhang
Xiao-Ming Wu
Yu-Lin Hua
Shou-Gen Yin
[1]Tang C W and Vanslyke S A 1987 Appl. Phys. Lett. 51 913
[2]Yook K S, Jeon S O, Lee J Y, Lee K H, Kwon Y S, Yoon S S and Yoon J H 2009 Org. Electron. 10 1378
[3]Xin L W, Wu X M, Hua Y L, Xiao Z H, Wang L, Zhang X and Yin S G 2015 Chin. Phys. B 24 037802
[4]Liu W, Liu G H, Liu Y, Li B J and Zhou X 2015 Chin. Phys. Lett. 32 077206
[5]Fong H H, Choy W C H, Hui K N and Liang Y J 2006 Appl. Phys. Lett. 88 113510
[6]Lee M T, Chen H H, Liao C H, Tsai C H and Chen C H 2004 Appl. Phys. Lett. 85 3301
[7]Hao J G, Deng Z B and Yang S Y 2007 J. Lumin. 122 723
[8]Park T J, Jeon W S, Choi J W, Pode R, Jang J and Kown J H 2009 Appl. Phys. Lett. 95 103303
[9]Wang Z B, Helander M G, Liu Z W, Greiner M T, Qiu J and Lu Z H 2010 Appl. Phys. Lett. 96 043303
[10]Khalifa M B, Vaufrey D and Tardy J 2004 Org. Electron. 5 187
[11]Kang J W, Lee D S, Park H D, Park Y S, Kim J W, Jeong W I, Yoo K M, Go K, Kimb S H and Kim J J 2007 J. Mater. Chem. 17 3714
[12]Shin H W, Shin E J, Cho S Y, Oh S L and Kim Y R 2007 J. Phys. Chem. C 111 15391
[13]Lutkouskaya K and Calzaferri G 2006 J. Phys. Chem. B 110 5633
[14]Hofmann S, Rosenow T C, Gather M C, Lüssem B and Leo K 2012 Phys. Rev. B 85 245209
[15]Itoh T, Mizutani T and Mori T 2006 Colloids Surf. A 284 594
[16]Garbuzov D Z, Bulovi V, Burrows P E and Forrest S R 1996 Chem. Phys. Lett. 249 433
[17]Velapoldi R A and Tonnesen H H 2004 J. Fluoresc. 14 465
[18]Mensfoort S L M, Vries R J, Shabro V, Loebl H P, Janssen R A J and Coehoorn R 2010 Org. Electron. 11 1408
[19]Thomschke M, Hofmann S, Olthof S, Anderson M, Kleemann H, Schober M, Lüssem B and Leo K 2011 Appl. Phys. Lett. 98 083304
[20]Meerheim R, Walzer K, Pfeiffer M and Leo K 2006 Appl. Phys. Lett. 89 061111
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 088503
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 088503
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 088503
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 088503
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 088503
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 088503
[7] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 088503
[8] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 088503
[9] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 088503
[10] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 088503
[11] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 088503
[12] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 088503
[13] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 088503
[14] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 088503
[15] RAJABI Kamran, CAO Wen-Yu, SHEN Tihan , JI Qing-Bin, HE Juan, YANG Wei, LI Lei, LI Ding, WANG Qi, HU Xiao-Dong. The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections[J]. Chin. Phys. Lett., 2015, 32(02): 088503
Viewed
Full text


Abstract