CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Low-Frequency Noise in Gate Tunable Topological Insulator Nanowire Field Emission Transistor near the Dirac Point |
Hao Zhang1,2, Zhi-Jun Song2, Jun-Ya Feng2, Zhong-Qing Ji2**, Li Lu2 |
1Department of Physics, Northwest University, Xi'an 710069 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Hao Zhang, Zhi-Jun Song, Jun-Ya Feng et al 2016 Chin. Phys. Lett. 33 087302 |
|
|
Abstract Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose topologically protected conducting surface is theoretically immune to back scattering. To suppress the bulk conductivity we synthesize antimony doped Bi$_2$Se$_3$ nanowires and conduct transport measurements at cryogenic temperatures. The low-frequency current noise measurement shows that the noise amplitude at the high-drain current regime can be described by Hooge's empirical relationship, while the noise level is significantly lower than that predicted by Hooge's model near the Dirac point. Furthermore, different frequency responses of noise power spectrum density for specific drain currents at the low drain current regime indicate the complex origin of noise sources of topological insulator.
|
|
Received: 26 April 2016
Published: 31 August 2016
|
|
PACS: |
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
73.63.Nm
|
(Quantum wires)
|
|
72.70.+m
|
(Noise processes and phenomena)
|
|
|
|
|
[1] | Moore J E 2010 Nature 464 194 | [2] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | [3] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 | [4] | Fu L et al 2007 Phys. Rev. Lett. 98 106803 | [5] | Moore J E and Balents L 2007 Phys. Rev. B 75 121306 | [6] | Balandin A A 2013 Nat. Nanotechnol. 8 549 | [7] | Hossain M Z et al 2011 ACS Nano 5 2657 | [8] | Ishigami M et al 2006 Appl. Phys. Lett. 88 203116 | [9] | Bhattacharyya S et al 2015 ACS Nano 9 12529 | [10] | Sangwan V K et al 2013 Nano Lett. 13 4351 | [11] | Persson K M et al 2013 Appl. Phys. Lett. 103 033508 | [12] | Jang D Y et al 2010 Appl. Phys. Lett. 97 073505 | [13] | Xia Y et al 2009 Nat. Phys. 5 398 | [14] | Zhang H et al 2009 Nat. Phys. 5 438 | [15] | He K, Zhang Y, Chang C Z, Song S L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584 | [16] | Hanaguri T, Igarashi K, Kawamura M, Takagi H and Sasagawa T 2010 Phys. Rev. B 82 081305(R) | [17] | Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C and Xue Q K 2010 Phys. Rev. Lett. 105 076801 | [18] | Brahlek M, Koirala N, Bansal N and Oh S 2015 Solid State Commun. 215 54 | [19] | Checkelsky J G, Hor Y S, Cava R J and Ong J 2011 Phys. Rev. Lett. 106 196801 | [20] | Seinberg H, Laloe J, Fatemi V, Moodera J S and Jarillo-Herrero P 2011 Phys. Rev. B 84 233101 | [21] | Kim D, Cho S, Butch N P, Syers P, Kirshenbaum K, Adam S, Paglione J and Fuhrer M S 2012 Nat. Phys. 8 460 | [22] | Wang H C, Liu H W, Chang C Z, Zuo H K, Zhao Y F, Sun Y, Xia Z C, He K, Ma X C, Xie X C, Xue Q K and Wang J 2014 Sci. Rep. 4 5817 | [23] | Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602 | [24] | Jauregui L A, Pettes M T, Rokhinson L P, Shi L and Chen Y P 2015 Sci. Rep. 5 8452 | [25] | Yang F, Taskin A A, Sasaki S, Segawa K, Ohno Y, Matsumoto K and Ando Y 2015 ACS Nano 9 4050 | [26] | Zhang Y, Chang C Z, He K, Wang L L, Chen X, Jia J F, Ma X C and Xue Q K 2010 Appl. Phys. Lett. 97 194102 | [27] | Hong S S, Cha J J, Kong D, He Ke, Jain J K and Samarth N 2012 Nat. Commun. 3 757 | [28] | Wang J, DaSilva A M, Chang C Z, Cui Y, Ma X C and Xue Q K 2011 Phys. Rev. B 83 245438 | [29] | Wang J, Chang C Z, Li H D, He K, Zhang D M, Singh M, Ma X C, Samarth N, Xie M H, Xue Q K and Chan M H 2012 Phys. Rev. B 85 045415 | [30] | Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C and Wang Y Y 2011 Phys. Rev. B 83 165440 | [31] | Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960 | [32] | Analytis J G, Chu J H, Chen Y L, Corredor F, McDonald R D, Shen Z X and Fisher I R 2010 Phys. Rev. B 81 205407 | [33] | Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 | [34] | Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Giannini E and Morpurgo A F 2011 Nat. Commun. 2 575 | [35] | Taskin A A, Sasaki S, Segawa K and Ando Y 2012 Phys. Rev. Lett. 109 066803 | [36] | Tian M L, Ning W, Qu Z, Du H F and Wang J 2013 Sci. Rep. 3 1212 | [37] | Peng H, Lai K, Kong D S, Meister S, Chen Y L, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225 | [38] | Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815 | [39] | Cho S, Dellabetta B, Zhong R D, Schneelock J, Liu T S, Gu G D, Gilbert M J and Mason N 2015 Nat. Commun. 6 7634 | [40] | Dutta P and Horn P 1981 Rev. Mod. Phys. 53 497 | [41] | Hooge F N 1976 Physica B 83 14 | [42] | Hooge F N 1994 IEEE Trans. Electron Devices 41 1926 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|