Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077503    DOI: 10.1088/0256-307X/33/7/077503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet
Zhong-Chao Wei1, Hai-Jun Liao1**, Jing Chen1, Hai-Dong Xie1, Zhi-Yuan Liu1, Zhi-Yuan Xie2, Wei Li3,4, B. Normand2, Tao Xiang1,5
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Renmin University of China, Beijing 100872
3Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191
4International Research Institute of Multidisciplinary Science, Beihang University, Beijing 100191
5Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Zhong-Chao Wei, Hai-Jun Liao, Jing Chen et al  2016 Chin. Phys. Lett. 33 077503
Download: PDF(550KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a modified spin-wave theory to study the 1/3 magnetization plateau of the antiferromagnetic Heisenberg model on the kagome lattice. By the self-consistent inclusion of quantum corrections, the 1/3 plateau is stabilized over a broad range of magnetic fields for all spin quantum numbers $S$. The values of the critical magnetic fields and the widths of the magnetization plateaus are fully consistent with the recent numerical results from exact diagonalization and infinite projected entangled paired states.
Received: 15 May 2016      Published: 01 August 2016
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.30.Ds (Spin waves)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077503       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Chao Wei
Hai-Jun Liao
Jing Chen
Hai-Dong Xie
Zhi-Yuan Liu
Zhi-Yuan Xie
Wei Li
B. Normand
Tao Xiang
[1]Anderson P W 1973 Mater. Res. Bull. 8 153
Balents L 2010 Nature 464 199
[2]Arovas D P 2008 Phys. Rev. B 77 104404
[3]Zeng C and Elser V 1990 Phys. Rev. B 42 8436
Marston J B and Zeng C 1991 J. Appl. Phys. 69 5962
Nikolic P and Senthil T 2003 Phys. Rev. B 68 214415
Singh R R P and Huse D A 2007 Phys. Rev. B 76 180407
Singh R R P and Huse D A 2008 Phys. Rev. B 77 144415
Evenbly G and Vidal G 2010 Phys. Rev. Lett. 104 187203
Iqbal Y, Becca F and Poilblanc D 2011 Phys. Rev. B 83 100404
[4]Sachdev S 1992 Phys. Rev. B 45 12377
Jiang H C, Weng Z Y and Sheng D N 2008 Phys. Rev. Lett. 101 117203
Yan S, Huse D A and White S R 2011 Science 332 1173
Depenbrock S, McCulloch I P and Schollw?ck U 2012 Phys. Rev. Lett. 109 067201
Jiang H C, Wang Z H and Balents L 2012 Nat. Phys. 8 902
Li T 2016 arXiv:1601.02165v1
[5]Ran Y, Hermele M, Lee P A and Wen X G 2007 Phys. Rev. Lett. 98 117205
Iqbal Y, Becca F, Sorella S and Poilblanc D 2013 Phys. Rev. B 87 060405
[6]Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025
[7]Hiroi Z, Hanawa M, Kobayashi N, Nohara M, Takagi H, Kato Y and Takigawa M 2001 J. Phys. Soc. Jpn. 70 3377
[8]Shores M P, Nytko E A, Barlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[9]Okamoto Y, Yoshida H and Hiroi Z 2009 J. Phys. Soc. Jpn. 78 033701
Okamoto Y, Tokunaga M, Yoshida H, Matsuo A, Kindo K and Hiroi Z 2011 Phys. Rev. B 83 180407
[10]Freedman D E, Chisnell R, McQueen T M, Lee Y S, Payen C and Nocera D G 2012 Chem. Commun. 48 64
[11]Hara S, Sato H and Narumi Y 2012 J. Phys. Soc. Jpn. 81 073707
[12]Okuta K, Hara S, Sato H, Narumi Y and Kindo K 2011 J. Phys. Soc. Jpn. 80 063703
[13]Liao H J, Xie Z Y, Chen J, Han X J, Xie H D, Normand B and Xiang T 2016 Phys. Rev. B 93 075154
[14]Zhitomirsky M E 2015 J. Phys.: Conf. Ser. 592 012110
[15]Nakano H and Sakai T 2015 J. Phys. Soc. Jpn. 84 063705
[16]Capponi S, Derzhko O, Honecker A, L?uchli A M and Richter J 2013 Phys. Rev. B 88 144416
[17]Nishimoto S, Shibata N and Hotta C 2013 Nat. Commun. 4 2287
[18]Picot T, Ziegler M, Orús R and Poilblanc D 2016 Phys. Rev. B 93 060407(R)
[19]Messio L, Lhuillier C and Misguich G 2013 Phys. Rev. B 87 125127
Colpa J H P 1978 Physica A 93 327
[20]Takano J, Tsunetsugu H and Zhitomirsky M E 2011 J. Phys.: Conf. Ser. 320 012011
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 077503
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 077503
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 077503
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 077503
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 077503
[6] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 077503
[7] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 077503
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 077503
[9] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 077503
[10] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 077503
[11] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 077503
[12] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 077503
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 077503
[14] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 077503
[15] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 077503
Viewed
Full text


Abstract