Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077502    DOI: 10.1088/0256-307X/33/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning Martensitic Phase Transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant Magnetocaloric Effect
Li-Fu Bao1**, Wen-Deng Huang1,2, Ya-Jie Ren1
1School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723000
2MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
Li-Fu Bao, Wen-Deng Huang, Ya-Jie Ren 2016 Chin. Phys. Lett. 33 077502
Download: PDF(924KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocaloric effect in MnCoGe$_{1-x}$ alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is obtained. It is observed that the peak values of magnetic entropy change of MnCoGe$_{0.97}$ are about $-$13.9, $-$35.1 and $-$47.4 J$\cdot$kg$^{-1}$K$^{-1}$ for $\Delta H=2$, 5, 7 T, respectively.
Received: 26 January 2016      Published: 01 August 2016
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Fu Bao
Wen-Deng Huang
Ya-Jie Ren
[1]Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305
[2]Pecharsky V K, Gschneidner Jr K A, Mudryk Y and Paudyal D 2009 J. Magn. Magn. Mater. 321 3541
[3]Pecharsky V K and Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299
[4]Brown G V 1976 J. Appl. Phys. 47 3673
[5]Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[6]Caron L, Trung N T and Bruck E 2011 Phys. Rev. B 84 020414
[7]Trung N T, Zhang L, Caron L, Buschow K H J and Bruck E 2010 Appl. Phys. Lett. 96 172504
[8]Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[9]Wada H, Matsuo S and Mitsuda A 2009 Phys. Rev. B 79 092407
[10]Niziol S, Weselucha A, Bazela W and Szytula A 1981 Solid State Commun. 39 1081
[11]Wang J T, Wang D S, Chen C F, Nashima O, Kanomata T, Mizuseki H and Kawazoe Y 2006 Appl. Phys. Lett. 89 262504
[12]Lin S, Tegus O, Bruck E, Dagula W, Gortenmulder T J and Buschow K H J 2006 IEEE Trans. Magn. 42 3776
[13]Hamer J B A, Daou R, Ozcan S, Mathur N D, Fray D J and Sandeman K G 2009 J. Magn. Magn. Mater. 321 3535
[14]Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
[15]Mohn P and Wohlfarth E P 1987 J. Phys. F: Met. Phys. 17 2421
[16]Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and Frank de B 2012 Nat. Commun. 3 873
[17]Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H, Zhong Z C and Du Y W 2012 J. Magn. Magn. Mater. 324 135
[18]Meng G H, Tegus O, Zhang W G, Song L and Huang J H 2010 J. Appl. Phys. 497 14
[19]Yüzüak E, Durak G, Dincer I and Elerman Y 2012 J. Alloys Compd. 541 256
[20]Zhang X X, Zhang B, Yu S Y, Liu Z H, Xu W J, Liu G D, Chen J L, Cao Z X and Wu G H 2007 Phys. Rev. B 76 132403
[21]Shen C J, Liu Q, Gong Y Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 097502
Related articles from Frontiers Journals
[1] Qingqi Zeng, Jianlei Shen, Enke Liu, Xuekui Xi, Wenhong Wang, Guangheng Wu, and Xixiang Zhang. Large Barocaloric Effect with High Pressure-Driving Efficiency in a Hexagonal MnNi$_{0.77}$Fe$_{0.23}$Ge Alloy[J]. Chin. Phys. Lett., 2020, 37(7): 077502
[2] Ruo-Shui Liu, Jun Liu, Li-Chen Wang, Zheng-Rui Li, Xiang Yu, Yan Mi, Qiao-Yan Dong, Kai Li, Dan-Li Li, Chen-Hui Lv, Li-Feng Liu, Shu-Li He. Table-Like Large Magnetocaloric Effect in the Misch Metal $R$Si Compound[J]. Chin. Phys. Lett., 2020, 37(1): 077502
[3] Kun Li, Fanggui Wang, Youfang Lai, Mingzhu Xue, Xin Li, Jinbo Yang, Changsheng Wang, Jingzhi Han, Shunquan Liu, Wenyun Yang, Yingchang Yang, Honglin Du. Magnetic and Magnetocaloric Properties of Polycrystalline and Oriented Mn$_{2-\delta}$Sn[J]. Chin. Phys. Lett., 2019, 36(9): 077502
[4] Yan-Fei Ma, Ben-Zhen Tang, Lei Xia, Ding Ding. Outstanding Magneto-Caloric Effect of a Gd$_{60}$Ni$_{37}$Co$_{3}$ Amorphous Alloy[J]. Chin. Phys. Lett., 2016, 33(12): 077502
[5] Cheng Wu, Ding Ding, Lei Xia. Effect of Al Addition on the Glass-Forming Ability and Magnetic Properties of a Gd–Co Binary Amorphous Alloy[J]. Chin. Phys. Lett., 2016, 33(01): 077502
[6] DING Ding, ZHANG Yi-Qing, XIA Lei. Magneto-Caloric Response of a Gd55Co25Al18Sn2 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2015, 32(10): 077502
[7] CHENG Ji-Hua, WANG Yin-Gang, XIE Dan. Interface Effects on the Magnetoelectric Properties of Magnetoelectric Multilayer Composites[J]. Chin. Phys. Lett., 2015, 32(01): 077502
[8] HU Feng, ZHANG Guo-Ying, HUANG Yi-Jia, XIA Wang-Suo. Effective Field Based on the Exchange Interaction in Gd3Ga5O12 under Low and Moderate Magnetic Field at Low Temperature[J]. Chin. Phys. Lett., 2014, 31(05): 077502
[9] DING Ding, WANG Peng, GUAN Quan, TANG Mei-Bo, XIA Lei. Excellent Glass Forming Ability and Refrigeration Capacity of a Gd55Al20Ni12Co10Mn3 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2013, 30(9): 077502
[10] WANG Peng, CHAN Kang-Cheung, LU Shuang, TANG Mei-Bo, XIA Lei. Effect of Minor Co Substitution for Ni on the Glass Forming Ability and Magnetic Properties of Gd55Al20Ni25 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2012, 29(9): 077502
[11] ZHANG Guo-Ying, CHEN Hui, YANG Dan, HU Feng, LIU Hai-Shun. Adiabatic Magnetooptical and Magnetocaloric Effects of Tb3Ga5O12 at Low Temperature in Strong Magnetic Fields[J]. Chin. Phys. Lett., 2012, 29(2): 077502
[12] HUI Xi-Dong**, XU Zhi-Yi, WANG En-Rui, CHEN Guo-Liang, LU Zhao-Ping. Excellent Magnetocaloric Effect in Er60Al18Co22 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(11): 077502
[13] ZHAO Xu, CHEN Wei, LI Ai-Jun, MA Li-Mei, ZONG Yun. Structural, Magnetic and Magnetocaloric Properties of La-deficient La0.77-xSrxCa0.2MnO3 Perovskites[J]. Chin. Phys. Lett., 2009, 26(8): 077502
[14] ZHANG Dong-Jie, DU You-Wei. Giant Positive Magnetoresistance in Magnetic Multilayer Film Prepared by Ion-Beam Sputtering[J]. Chin. Phys. Lett., 2003, 20(6): 077502
[15] ZHONG Wei, JIANG Hong-Ying, WU Xiao-Ling, TANG Nu-Jiang, CHEN Wei, DU You-Wei. Magnetic and Transport Properties of Oxygen-Deficient Perovskite Manganites[J]. Chin. Phys. Lett., 2003, 20(5): 077502
Viewed
Full text


Abstract