CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tuning Martensitic Phase Transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant Magnetocaloric Effect |
Li-Fu Bao1**, Wen-Deng Huang1,2, Ya-Jie Ren1 |
1School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723000 2MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
Li-Fu Bao, Wen-Deng Huang, Ya-Jie Ren 2016 Chin. Phys. Lett. 33 077502 |
|
|
Abstract The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocaloric effect in MnCoGe$_{1-x}$ alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is obtained. It is observed that the peak values of magnetic entropy change of MnCoGe$_{0.97}$ are about $-$13.9, $-$35.1 and $-$47.4 J$\cdot$kg$^{-1}$K$^{-1}$ for $\Delta H=2$, 5, 7 T, respectively.
|
|
Received: 26 January 2016
Published: 01 August 2016
|
|
PACS: |
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
|
|
|
[1] | Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305 | [2] | Pecharsky V K, Gschneidner Jr K A, Mudryk Y and Paudyal D 2009 J. Magn. Magn. Mater. 321 3541 | [3] | Pecharsky V K and Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299 | [4] | Brown G V 1976 J. Appl. Phys. 47 3673 | [5] | Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675 | [6] | Caron L, Trung N T and Bruck E 2011 Phys. Rev. B 84 020414 | [7] | Trung N T, Zhang L, Caron L, Buschow K H J and Bruck E 2010 Appl. Phys. Lett. 96 172504 | [8] | Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494 | [9] | Wada H, Matsuo S and Mitsuda A 2009 Phys. Rev. B 79 092407 | [10] | Niziol S, Weselucha A, Bazela W and Szytula A 1981 Solid State Commun. 39 1081 | [11] | Wang J T, Wang D S, Chen C F, Nashima O, Kanomata T, Mizuseki H and Kawazoe Y 2006 Appl. Phys. Lett. 89 262504 | [12] | Lin S, Tegus O, Bruck E, Dagula W, Gortenmulder T J and Buschow K H J 2006 IEEE Trans. Magn. 42 3776 | [13] | Hamer J B A, Daou R, Ozcan S, Mathur N D, Fray D J and Sandeman K G 2009 J. Magn. Magn. Mater. 321 3535 | [14] | Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003 | [15] | Mohn P and Wohlfarth E P 1987 J. Phys. F: Met. Phys. 17 2421 | [16] | Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and Frank de B 2012 Nat. Commun. 3 873 | [17] | Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H, Zhong Z C and Du Y W 2012 J. Magn. Magn. Mater. 324 135 | [18] | Meng G H, Tegus O, Zhang W G, Song L and Huang J H 2010 J. Appl. Phys. 497 14 | [19] | Yüzüak E, Durak G, Dincer I and Elerman Y 2012 J. Alloys Compd. 541 256 | [20] | Zhang X X, Zhang B, Yu S Y, Liu Z H, Xu W J, Liu G D, Chen J L, Cao Z X and Wu G H 2007 Phys. Rev. B 76 132403 | [21] | Shen C J, Liu Q, Gong Y Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 097502 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|