Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077501    DOI: 10.1088/0256-307X/33/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$
Chao-Jing Lin, You-Guo Shi, Yong-Qing Li**
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Chao-Jing Lin, You-Guo Shi, Yong-Qing Li 2016 Chin. Phys. Lett. 33 077501
Download: PDF(618KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a detailed investigation of magnetic properties of colossal magnetoresistance material HgCr$_2$Se$_4$. While spontaneous magnetization and zero-field magnetic susceptibility are found to follow asymptotic scaling laws for a narrow range of temperatures near the critical point, two methods with connections to the renormalization group theory provide analytical descriptions of the magnetic properties for much wider temperature ranges. Based on this, an analytical formula is obtained for the temperature dependence of the low field magnetoresistance in the paramagnetic phase.
Received: 07 April 2016      Published: 01 August 2016
PACS:  75.50.Pp (Magnetic semiconductors)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.10.-b (General theory and models of magnetic ordering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao-Jing Lin
You-Guo Shi
Yong-Qing Li
[1]Coey J M D, Viret M and von Molnár S 1999 Adv. Phys. 48 167
[2]Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[3]Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[4]Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Science 264 413
[5]Das P, Amyan A, Brandenburg J, Müller J, Xiong P, von Molnár S and Fisk Z 2012 Phys. Rev. B 86 184425
[6]Ramirez A P and Subramanian M A 1997 Science 277 546
[7]Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502
[8]Gartenhaus S and McCullough W S 1987 Phys. Rev. B 35 3299
[9]Burnett S S C and Gartenhaus S 1991 Phys. Rev. B 43 591
[10]Baltzer P K, Lehmann H W and Robbins M 1966 Phys. Rev. 151 367
[11]Lin C J, Yi C J, Shi Y G, Zhang L, Zhang G M, Müller J and Li Y Q 2016 Phys. Rev. Lett. (Submitted)
[12]Guan T, Lin C J, Yang C L, Shi Y G, Ren C, Li Y Q, Weng H M, Dai X, Fang Z, Yan S S and Xiong P 2015 Phys. Rev. Lett. 115 087002
[13]De J M, Ibarra M R, Algarabel P A, Ritter C, Marquina C, Blasco J, García J, Moral A D and Arnold Z 1997 Nature 386 256
[14]Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[15]Wang W D, Li A, Dong T, Lei M, Fu X L, Miao S S, Zheng P, Wang P, Shi Y G, Luo J L and Wang N L 2013 J. Low Temp. Phys. 171 127
[16]Tsurkan V, Ehlers D, Felea V, Krug von Nidda H A and Loidl A 2013 Phys. Rev. B 88 144417
[17]Arrott A 1957 Phys. Rev. 108 1394
[18]Fisher M E 1967 Rep. Prog. Phys. 30 615
[19]Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)
[20]Fan J, Ling L, Hong B, Zhang L, Pi L and Zhang Y 2010 Phys. Rev. B 81 144426
[21]Zhang L, Fan J Y, Li L, Li R W, Ling L S, Qu Z, Tong W, Tan S and Zhang Y H 2010 Europhys. Lett. 91 57001
[22]Wilson K G 1971 Phys. Rev. B 4 3174
[23]Wegner F J 1972 Phys. Rev. B 5 4529
[24]Le Guillou J C and Justin J Z 1980 Phys. Rev. B 21 3976
[25]Gartenhaus S 1981 Phys. Rev. B 23 4541
[26]Aharony A and Fisher M E 1980 Phys. Rev. Lett. 45 679
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077501
[2] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 077501
[4] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 077501
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 077501
[6] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 077501
[7] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 077501
[8] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 077501
[9] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 077501
[10] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 077501
[11] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 077501
[12] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 077501
[13] JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong, QIN Xiu-Fang, FAN Xiao-Chen, ZHANG Min-Gang, ZHOU Jun-Qi, XU Xiao-Hong. Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films[J]. Chin. Phys. Lett., 2013, 30(4): 077501
[14] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 077501
[15] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1?xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 077501
Viewed
Full text


Abstract