CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer |
Sheng-Rui Xu1, Ying Zhao1, Teng Jiang1, Jin-Cheng Zhang1**, Pei-Xian Li2**, Yue Hao1 |
1Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071 2School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071
|
|
Cite this article: |
Sheng-Rui Xu, Ying Zhao, Teng Jiang et al 2016 Chin. Phys. Lett. 33 068102 |
|
|
Abstract The effect of a self-organized SiN$_{x}$ interlayer on the defect density of (11$\bar{2}$2) semipolar GaN grown on $m$-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffraction. The SiN$_{x}$ interlayer reduces the $c$-type dislocation density from $2.5\times10^{10}$ cm$^{-2}$ to $5\times10^{8}$ cm$^{-2}$. The SiN$_{x}$ interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from $2.1\times10^{5}$ cm$^{-1}$ to $1.3\times10^{4}$ cm$^{-1}$. The large dislocations and BSF reduction in semipolar (11$\bar{2}$2) GaN with the SiN$_{x}$ interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiN$_{x}$ interlayer, and the second mechanism is associated with the unique structure character of (11$\bar{2}$2) semipolar GaN.
|
|
Received: 29 January 2016
Published: 30 June 2016
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
78.55.Ap
|
(Elemental semiconductors)
|
|
|
|
|
[1] | Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865 | [2] | Johnston C F, Moram M A, Kappers M J and Humphreys C J 2009 Appl. Phys. Lett. 94 161109 | [3] | Xu S R, Hao Y, Zhang J C, Jiang T, Yang L, Lu X and Lin Z Y 2013 Nano Lett. 13 3654 | [4] | Xu S R, Lin Z Y, Xue X Y, Liu Z Y, Ma J C, Jiang T, Mao W, Wang D H, Zhang J C and Hao Y 2012 Chin. Phys. Lett. 29 017803 | [5] | Sato H, Tyagi A, Zhong H, Fellows N, Chung R B, Saito M, Fujito K, Speck, J S, DenBaars S P and Nakamura S 2007 Phys. Status Solidi 1 162 | [6] | Sato H, Chung R B, Hirasawa H, Fellows N, Masui H, Wu F, Saito M, Fujito K, Speck J S and DenBaars S P 2008 Appl. Phys. Lett. 92 221110 | [7] | Funato M, Ueda M and Kawakami Y 2006 Jpn. J. Appl. Phys. 45 L659 | [8] | Sun Q, Leung B, Yerino C D, Zhang Y and Han J 2009 Appl. Phys. Lett. 95 231904 | [9] | Kappers M J, Hollander J, McAleese C, Johnston C F, Broom, R F, Barnard J S, Vickers M E and Humphreys C J 2007 J. Cryst. Growth 300 155 | [10] | Mierry P D, Kriouche N, Nemoz M and Nataf G 2009 Appl. Phys. Lett. 94 191903 | [11] | Sakai A, Sunakawa H and Akira U 1997 Appl. Phys. Lett. 71 2259 | [12] | Park J, Grudowski P A, Eiting C J and Dupuis R D 1998 Appl. Phys. Lett. 73 333 | [13] | Wuu D S, Wang W K, Wen K S, Huang S C, Lin S H, Huang S Y, Lin C F and Horng R H 2006 Appl. Phys. Lett. 89 161105 | [14] | Armitage R and Hirayama H 2008 Appl. Phys. Lett. 92 092121 | [15] | Wei T B, Hu Q, Duan R F, Wei X C, Huo Z Q, Wang J X, Zeng Y P, Wang G H and Li J M 2009 J. Cryst. Growth 311 4153 | [16] | Ni X, ?zgür ü Baski A A, Morkoc H, Zhou L, Smith D J and Tran C A 2007 Appl. Phys. Lett. 90 182109 | [17] | Imer B, Wu F, Speck J S and DenBaars S P 2007 J. Cryst. Growth 306 330 | [18] | Jiang T, Xu S R, Zhang J C, Xie Y and Hao Y 2016 Sci. Rep. 6 19955 | [19] | Zhou X W, Xu S R, Zhang J C, Dang J Y, Lv L, Hao Y and Guo L X 2012 Chin. Phys. B 21 067803 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|