Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 068102    DOI: 10.1088/0256-307X/33/6/068102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer
Sheng-Rui Xu1, Ying Zhao1, Teng Jiang1, Jin-Cheng Zhang1**, Pei-Xian Li2**, Yue Hao1
1Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
2School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071
Cite this article:   
Sheng-Rui Xu, Ying Zhao, Teng Jiang et al  2016 Chin. Phys. Lett. 33 068102
Download: PDF(1659KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of a self-organized SiN$_{x}$ interlayer on the defect density of (11$\bar{2}$2) semipolar GaN grown on $m$-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffraction. The SiN$_{x}$ interlayer reduces the $c$-type dislocation density from $2.5\times10^{10}$ cm$^{-2}$ to $5\times10^{8}$ cm$^{-2}$. The SiN$_{x}$ interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from $2.1\times10^{5}$ cm$^{-1}$ to $1.3\times10^{4}$ cm$^{-1}$. The large dislocations and BSF reduction in semipolar (11$\bar{2}$2) GaN with the SiN$_{x}$ interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiN$_{x}$ interlayer, and the second mechanism is associated with the unique structure character of (11$\bar{2}$2) semipolar GaN.
Received: 29 January 2016      Published: 30 June 2016
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  71.55.Eq (III-V semiconductors)  
  78.55.Ap (Elemental semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/068102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/068102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Rui Xu
Ying Zhao
Teng Jiang
Jin-Cheng Zhang
Pei-Xian Li
Yue Hao
[1]Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865
[2]Johnston C F, Moram M A, Kappers M J and Humphreys C J 2009 Appl. Phys. Lett. 94 161109
[3]Xu S R, Hao Y, Zhang J C, Jiang T, Yang L, Lu X and Lin Z Y 2013 Nano Lett. 13 3654
[4]Xu S R, Lin Z Y, Xue X Y, Liu Z Y, Ma J C, Jiang T, Mao W, Wang D H, Zhang J C and Hao Y 2012 Chin. Phys. Lett. 29 017803
[5]Sato H, Tyagi A, Zhong H, Fellows N, Chung R B, Saito M, Fujito K, Speck, J S, DenBaars S P and Nakamura S 2007 Phys. Status Solidi 1 162
[6]Sato H, Chung R B, Hirasawa H, Fellows N, Masui H, Wu F, Saito M, Fujito K, Speck J S and DenBaars S P 2008 Appl. Phys. Lett. 92 221110
[7]Funato M, Ueda M and Kawakami Y 2006 Jpn. J. Appl. Phys. 45 L659
[8]Sun Q, Leung B, Yerino C D, Zhang Y and Han J 2009 Appl. Phys. Lett. 95 231904
[9]Kappers M J, Hollander J, McAleese C, Johnston C F, Broom, R F, Barnard J S, Vickers M E and Humphreys C J 2007 J. Cryst. Growth 300 155
[10]Mierry P D, Kriouche N, Nemoz M and Nataf G 2009 Appl. Phys. Lett. 94 191903
[11]Sakai A, Sunakawa H and Akira U 1997 Appl. Phys. Lett. 71 2259
[12]Park J, Grudowski P A, Eiting C J and Dupuis R D 1998 Appl. Phys. Lett. 73 333
[13]Wuu D S, Wang W K, Wen K S, Huang S C, Lin S H, Huang S Y, Lin C F and Horng R H 2006 Appl. Phys. Lett. 89 161105
[14]Armitage R and Hirayama H 2008 Appl. Phys. Lett. 92 092121
[15]Wei T B, Hu Q, Duan R F, Wei X C, Huo Z Q, Wang J X, Zeng Y P, Wang G H and Li J M 2009 J. Cryst. Growth 311 4153
[16]Ni X, ?zgür ü Baski A A, Morkoc H, Zhou L, Smith D J and Tran C A 2007 Appl. Phys. Lett. 90 182109
[17]Imer B, Wu F, Speck J S and DenBaars S P 2007 J. Cryst. Growth 306 330
[18]Jiang T, Xu S R, Zhang J C, Xie Y and Hao Y 2016 Sci. Rep. 6 19955
[19]Zhou X W, Xu S R, Zhang J C, Dang J Y, Lv L, Hao Y and Guo L X 2012 Chin. Phys. B 21 067803
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 068102
[2] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 068102
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 068102
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 068102
[5] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 068102
[6] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 068102
[7] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 068102
[8] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 068102
[9] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 068102
[10] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 068102
[11] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 068102
[12] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 068102
[13] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 068102
[14] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 068102
[15] Guo-Cai Dong, D. V. Baarle, J. Frenken, Qi-Wen Tang. Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 068102
Viewed
Full text


Abstract