CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic $M_{3}$N$_{4}$ ($M$=C, Si, Sn) Polymorphs via First-Principles Calculations |
Yu-Ping Cang, Shuai-Bin Lian**, Hui-Ming Yang, Dong Chen |
College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000
|
|
Cite this article: |
Yu-Ping Cang, Shuai-Bin Lian, Hui-Ming Yang et al 2016 Chin. Phys. Lett. 33 066301 |
|
|
Abstract The recently discovered tetragonal, monoclinic and orthorhombic polymorphs of $M_{3}$N$_{4}$ ($M$=C, Si, Sn) are investigated by using first-principles calculations. A set of anisotropic elastic quantities, i.e., the bulk and shear moduli, Young's modulus, Poisson ratio, $B/G$ ratio and Vickers hardness of $M_{3}$N$_{4}$ ($M$=C, Si, Sn) are predicted. The quasi-harmonic Debye model, assuming that the solids are isotopic, may lead to large errors for the non-cubic crystals. The thermal effects are obtained by the traditional quasi-harmonic approach. The dependences of heat capacity, thermal expansion coefficient and Debye temperature on temperature and pressure are systematically discussed in the pressure range of 0–10 GPa and in the temperature range of 0–1100 K. More importantly, o-C$_{3}$N$_{4}$ is a negative thermal expansion material. Our results may have important consequences in shaping the understanding of the fundamental properties of these binary nitrides.
|
|
Received: 11 January 2016
Published: 30 June 2016
|
|
PACS: |
63.20.dk
|
(First-principles theory)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
65.40.Ba
|
(Heat capacity)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
|
|
|
[1] | Reshak A H, Khan S A and Auluck S 2014 RSC Adv. 4 6957 | [2] | Zhang X G, Chen K J, Qian B et al 2008 Chin. Phys. Lett. 25 1888 | [3] | Duan J J, Chen S, Jaroniec M et al 2015 ACS Nano 9 931 | [4] | Li Q, Liu H Y, Zhou D et al 2012 Phys. Chem. Chem. Phys. 14 13081 | [5] | Ding Y C, Chen M and Wu W J 2015 J. Theor. Comput. Chem. 14 1550024 | [6] | Zerr A, Miehe G, Serghiou G et al 1999 Nature 400 340 | [7] | Xu B, Dong J J, McMillan P F et al 2011 Phys. Rev. B 84 014113 | [8] | Caskey C M, Seabold J A and Stevanovi? V 2015 J. Mater. Chem. C 3 1389 | [9] | Luo Y S, Cang Y P and Chen D 2014 Comput. Condens. Matter 1 1 | [10] | Fang C M and de Wijs G A 2004 J. Phys.: Condens. Matter 16 3027 | [11] | Fang C M, de Wijs G A, Hintzen H T et al 2003 J. Appl. Phys. 93 5175 | [12] | Wendel J A and Goddard III W A 1992 J. Chem. Phys. 97 5048 | [13] | Wang L G, Sun J X, Yang W et al 2008 Acta Phys. Pol. A 114 807 | [14] | Cui L, Hu M, Wang Q Q et al 2015 J. Solid State Chem. 228 20 | [15] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | [16] | Vanderbilt D 1990 Phys. Rev. B 41 7892 | [17] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [18] | Blochl P E 1994 Phys. Rev. B 50 17953 | [19] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [20] | Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 | [21] | Otero-de-la-Roza A and Lua?a V 2011 Comput. Phys. Commun. 182 1708 | [22] | Otero-de-la-Roza A, Abbasi-Pérez D and Lua?a V 2011 Comput. Phys. Commun. 182 2232 | [23] | Wang J M, Wang J Y, Li A J et al 2014 J. Am. Ceram. Soc. 97 1202 | [24] | Zhang Y H, Franke P, Seifert H J et al 2015 J. Am. Ceram. Soc. 98 2570 | [25] | Zhang Z G, Lu M C, Zhu L et al 2014 Phys. Lett. A 378 741 | [26] | Peng S M 2015 J. Nucl. Mater. 464 230 | [27] | Pugh S F 1954 Philos. Mag. Ser. 45 823 | [28] | Chen X Q, Niu H Y, Li D Z et al 2011 Intermetallics 19 1275 | [29] | Zhang X D, Cui S X and Shi H F 2014 Chin. Phys. Lett. 31 016401 | [30] | Jiang J Z, Lindelov H, Gerward L et al 2002 Phys. Rev. B 65 161202R |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|