Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 066201    DOI: 10.1088/0256-307X/33/6/066201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Polymer-Sandwich Ultra-Thin Silicon(100) Platform for Flexible Electronics
Yong-Hua Zhang1**, S. Karthikeyan2, Jian Zhang1
1Department of Electronic Science and Engineering, East China Normal University, Shanghai 200241
2Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis 55455, USA
Cite this article:   
Yong-Hua Zhang, S. Karthikeyan, Jian Zhang 2016 Chin. Phys. Lett. 33 066201
Download: PDF(812KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a potential flexible substrate for flexible electronics, a polymer-sandwiched ultra-thin silicon platform is studied. SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by an ANSYS simulation. Using the plasma enhanced chemical vapor deposited SiO$_{2}$/Si$_{3}$N$_{4}$ composite film as an etching mask, a $4''$ silicon-(100) wafer is thinned to 26 μm without rupture in a 30 wt.% KOH solution. The thinned wafer is coated on both sides with 20 μm of SU-8 photoresist and is cut into strips. Then the strips are bent by a caliper to measure its bending radius. A sector model of bending deformation is adopted to estimate the radius of curvature. The determined minimal bending radius of the polymer-sandwiched ultra-thin silicon layer is no more than 3.3 mm. The fabrication process of this sandwich structure can be used as a post-fabrication process for high performance flexible electronics.
Received: 11 November 2015      Published: 30 June 2016
PACS:  62.20.D- (Elasticity)  
  61.82.Pv (Polymers, organic compounds)  
  61.90.+d (Other topics in structure of solids and liquids; crystallography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/066201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/066201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Hua Zhang
S. Karthikeyan
Jian Zhang
[1]Takei K et al 2010 Nat. Mater. 9 821
[2]Jeong J et al 2012 Sens. Mater. 24 189
[3]Wu F et al 2015 J. Microelectromech. Syst. 24 62
[4]Zhou L et al 2006 Proc. SPIE (Kissimmee, USA 19–21 April 2006) 6225 62250E
[5]Zhang J et al 2015 J. Power Sources 281 404
[6]Hu J et al 2013 Opt. Mater. Express 3 1313
[7]Zheng P et al 2009 Micronanoelectron. Technol. 46 604 (in Chinese)
[8]Zhang C H et al 2013 Chin. Phys. Lett. 30 086201
[9]Mack S et al 2006 Appl. Phys. Lett. 88 213101
[10]Ahmed S M, Hussain A M, Rojas J P and Hussain M M 2014 Proc. IEEE ICMEMS (San Francisco, USA 26–30 January 2014) p 548
[11]Christiaens W, Bosman E and Vanfleteren J 2010 IEEE Trans. Components Packag Technol. 33 754
[12]Gere J M and Timoshenko S P 1984 Mechanics of Materials (New Delhi: CBS Publishers)
[13]Zhang J, Tank L and Gong H Q 2001 Polym. Testing 20 693
[14]Zine-El-Abidine I and Okoniewski M 2009 IEEE Trans. Adv. Package 32 448
[15]Ashraf M W et al 2009 13th IEEE Multitopic International Conference (Islamabad, Pakistan 14–15 December 2009) 5383101
[16]http://www.microchem.com
[17]French P J, Gennissen P T J and Sarro P M 1997 Sens. Actuators A 62 652
[18]Zubel I and Kramkowska M 2002 Sens. Actuators A 101 255
[19]Freund L B and Suresh S 2003 Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press)
[20]Suo Z et al 1999 Appl. Phys. Lett. 74 1177
Related articles from Frontiers Journals
[1] Wang-Min Zhou, Wang-Jun Li. Instability of Epitaxially Strained Thin Films Based on Nonlocal Elasticity[J]. Chin. Phys. Lett., 2019, 36(1): 066201
[2] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 066201
[3] LIU Yun-Fang, CHENG Lai-Fei, ZENG Qing-Feng, ZHANG Li-Tong. Effects of N on Electronic and Mechanical Properties of H-Type SiC[J]. Chin. Phys. Lett., 2015, 32(08): 066201
[4] K. Ephraim Babu, N. Murali, K. Vijaya Babu, B. Kishore Babu, V. Veeraiah. Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method[J]. Chin. Phys. Lett., 2015, 32(01): 066201
[5] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 066201
[6] FANG Ming-Lei, XU Feng, WEI Wen-Hou, YANG Zhi-Yong. Structural and Physical Properties of AsxSe100?x Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 066201
[7] WANG Ai-Kun, WANG Shi-Guang, XUE Rong-Jie, LIU Guo-Cai, ZHAO Kun. Correlation between Atomic Size Ratio and Poisson's Ratio in Metallic Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 066201
[8] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 066201
[9] ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng, ZHOU Chang-Jian, SHU Yi, TIAN He, REN Tian-Ling. A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane[J]. Chin. Phys. Lett., 2013, 30(8): 066201
[10] M. Güler, E. Güler. Embedded Atom Method-Based Geometry Optimization Aspects of Body-Centered Cubic Metals[J]. Chin. Phys. Lett., 2013, 30(5): 066201
[11] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 066201
[12] DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 066201
[13] WANG Ting, CUI Zhan-Zhong, XU Li-Xin. Thermoelastic Stress Field Investigation of GaN Material for Laser Lift-off Technique based on Finite Element Method[J]. Chin. Phys. Lett., 2009, 26(9): 066201
Viewed
Full text


Abstract