Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 066102    DOI: 10.1088/0256-307X/33/6/066102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Irradiation Effects on the Retention of Hydrogen in Al$_{2}$O$_{3}$
Mei-Xiong Tang, Xu Wang, Yan-Wen Zhang, Dong Han, Yun-Biao Zhao, Zi-Qiang Zhao**
State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871
Cite this article:   
Mei-Xiong Tang, Xu Wang, Yan-Wen Zhang et al  2016 Chin. Phys. Lett. 33 066102
Download: PDF(904KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Substantial defects are produced in Al$_{2}$O$_{3}$ by 4 MeV Au ion irradiation with a fluence of $4.4\times10^{15}$ cm$^{-2}$. Rutherford backscattering spectrometry/channeling and cross-sectional transmission electron microscopy methods are used to investigate the irradiation damage. The 190 keV H ions with a fluence of $1\times10^{17}$ cm$^{-2}$ are used for implanting pristine and Au ion irradiated Al$_{2}$O$_{3}$ to explore the irradiation damage effects on the hydrogen retention in Al$_{2}$O$_{3}$. The time-of-flight secondary ion mass spectrometry method is used to obtain the single hydrogen depth profile and ions mass spectra (IMS), in which we find that implanted hydrogens interacted with defects produced by Au ion irradiation. In IMS, we also obtain the hydrogen retention at a certain depth. Comparing the hydrogen retention in different Al$_{2}$O$_{3}$ samples, it is concluded that the irradiation damage improves the tritium permeation resistance property of Al$_{2}$O$_{3}$ under given conditions. This result means that Al$_{2}$O$_{3}$ may strengthen its property of reducing tritium permeation under the harsh irradiation environment in fusion reactors.
Received: 07 March 2016      Published: 30 June 2016
PACS:  61.80.Jh (Ion radiation effects)  
  66.30.Ny (Chemical interdiffusion; diffusion barriers)  
  68.49.Sf (Ion scattering from surfaces (charge transfer, sputtering, SIMS))  
  82.80.Yc (Rutherford backscattering (RBS), and other methods ofchemical analysis)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/066102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/066102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mei-Xiong Tang
Xu Wang
Yan-Wen Zhang
Dong Han
Yun-Biao Zhao
Zi-Qiang Zhao
Related articles from Frontiers Journals
[1] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 066102
[2] Cai-Yu Wu, Ting-Ting Gao, Zhi-Wei Lin, Yue Zhang, Huan-Huan He, Jian Zhang. Bubble Formation in Apatite Structures by He-Ion Irradiation at High Temperature[J]. Chin. Phys. Lett., 2020, 37(5): 066102
[3] Yan-Bin Sheng, Hong-Peng Zhang, Tie-Long Shen, Kong-Fang Wei, Long Kang, Rui Liu, Tong-Min Zhang, Bing-Sheng Li. Atomic Mixing Induced by Ion Irradiation of V/Cu Multilayers[J]. Chin. Phys. Lett., 2020, 37(3): 066102
[4] Bing-Sheng Li, Zhi-Guang Wang, Tie-Long Shen, Kong-Fang Wei, Yan-Bin Sheng, Tamakai Shibayama, Xi-Rui Lu, An-Li Xiong. Effects of Helium Implantation and Subsequent Electron Irradiation on Microstructures of Fe-11wt.% Cr Model Alloy[J]. Chin. Phys. Lett., 2019, 36(4): 066102
[5] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 066102
[6] Jin-Long Liu, Liang-Xian Chen, Jun-Jun Wei, Li-Fu Hei, Xu Zhang, Cheng-Ming Li. Surface Carbonization of GaN and the Related Structure Evolution during the Annealing Process[J]. Chin. Phys. Lett., 2018, 35(1): 066102
[7] Li Zheng, Guang-Fu Wang, Meng-Lin Qiu, Ying-Jie Chu, Mi Xu, Peng Yin. Ionoluminescence Spectra of a ZnO Single Crystal Irradiated with 2.5MeV H$^{+}$ Ions[J]. Chin. Phys. Lett., 2017, 34(8): 066102
[8] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 066102
[9] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 066102
[10] Yu-Zhu Liu, Bing-Sheng Li, Li Zhang. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(5): 066102
[11] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 066102
[12] Yi Han, Bing-Sheng Li, Zhi-Guang Wang, Jin-Xin Peng, Jian-Rong Sun, Kong-Fang Wei, Cun-Feng Yao, Ning Gao, Xing Gao, Li-Long Pang, Ya-Bin Zhu, Tie-Long Shen, Hai-Long Chang, Ming-Huan Cui, Peng Luo, Yan-Bin Sheng, Hong-Peng Zhang, Xue-Song Fang, Si-Xiang Zhao, Jin Jin, Yu-Xuan Huang, Chao Liu, Dong Wang, Wen-Hao He, Tian-Yu Deng, Peng-Fei Tai, Zhi-Wei Ma. H-ion Irradiation-induced Annealing in He-ion Implanted 4H-SiC[J]. Chin. Phys. Lett., 2017, 34(1): 066102
[13] Meng-Lin Qiu, Ying-Jie Chu, Guang-Fu Wang, Mi Xu, Li Zheng. Ion-Beam-Induced Luminescence of LiF Using Negative Ions[J]. Chin. Phys. Lett., 2017, 34(1): 066102
[14] Ying-Jie Chu, Guang-Fu Wang, Meng-Lin Qiu, Mi Xu, Li Zheng. In Situ Luminescence Measurement from Silica Glasses Irradiated with 20keV H$^{-}$ Ions[J]. Chin. Phys. Lett., 2016, 33(10): 066102
[15] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 066102
Viewed
Full text


Abstract