Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 054204    DOI: 10.1088/0256-307X/33/5/054204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Structured Illumination Chip Based on Integrated Optics
Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu**
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Yong Liu, Chen Wang, Anastasia Nemkova et al  2016 Chin. Phys. Lett. 33 054204
Download: PDF(848KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on-insulator platform. Based on the simulation of Gaussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm$^{2}$. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.
Received: 29 February 2016      Published: 31 May 2016
PACS:  42.79.Dj (Gratings)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  87.64.M- (Optical microscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/054204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/054204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong Liu
Chen Wang
Anastasia Nemkova
Shi-Ming Hu
Zhi-Yong Li
Yu-De Yu
[1]Rocchini C, Cignoni P, Montani C, Pingi P and Scopigno R 2001 Computer Graphics Forum (New York: Wiley) p 299
[2]Neil M, Juskaitis R and Wilson T 1997 Opt. Lett. 22 1905
[3]Gustafsson M G L 2000 J. Microsc. 198 82
[4]Gustafsson M G L 2005 Proc. Natl. Acad. Sci. USA 102 13081
[5]Littleton B, Lai K, Longstaff D, Sarafis V, Munroe P, Heckenberg N and Dunlop H R 2007 Micron 38 150
[6]Ryu J, Hong S S, Horn B K P, Freeman D M and Mermelstein M S 2006 Appl. Phys. Lett. 88 171112
[7]Dan D, Lei M, Yao B L, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, Gao P, Ye T and Zhao W 2013 Sci. Rep. 3 1116
[8]Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P and Betzig E 2015 Science 349 aab3500
[9]Witzens J, Jones T B and Hochberg M 2010 Nat. Photon. 4 10
[10]Stay J L and Gaylord T K 2008 Appl. Opt. 47 3221
[11]Zhu Y, Xu X J et al 2010 Chin. Phys. B 19 014219
[12]Zhang C, Sun J H et al 2013 Chin. Phys. Lett. 30 014207
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 054204
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 054204
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 054204
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 054204
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 054204
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 054204
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 054204
[8] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 054204
[9] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 054204
[10] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 054204
[11] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 054204
[12] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 054204
[13] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 054204
[14] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 054204
[15] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-μm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 054204
Viewed
Full text


Abstract