Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 054205    DOI: 10.1088/0256-307X/33/5/054205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effects of Strong Turbulence on the Spiral Plane Mode of Whittaker–Gaussian Beam through Terrene-Atmosphere
Ye Li1, Yi-Xin Zhang1,2**
1School of Science, Jiangnan University, Wuxi 214122
2School of Internet of Things, Jiangnan University, Wuxi 214122
Cite this article:   
Ye Li, Yi-Xin Zhang 2016 Chin. Phys. Lett. 33 054205
Download: PDF(447KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The analytic formulae of probability distribution of spiral plane modes for the Whittaker–Gaussian (WG) beams with orbital angular momentum (OAM) in strong turbulence regime are modeled based on the modified Rytov approximation. Numerical results show that the crosstalk range of OAM modes in the vicinity of signal mode increases with the increasing refractive-index construction parameter. However, effects of change of the width of the Gaussian envelope and the parameter ${W_0}$ of WG beams on normalization energy weight of signal mode can be ignored. We find theoretically that signal spiral plane mode of WG beams at each OAM level approximatively has the same normalization energy weight, implying that the channels with WG (pseudo non-diffraction) beam have higher channel capacity than the channels with the Laguerre–Gaussian beam.
Received: 18 January 2016      Published: 31 May 2016
PACS:  42.25.Dd (Wave propagation in random media)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.68.Bz (Atmospheric turbulence effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/054205       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/054205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ye Li
Yi-Xin Zhang
[1]Paterson C 2005 Phys. Rev. Lett. 94 153901
[2]Jiang Y S, Wang S H, Zhang J H et al 2013 Opt. Commun. 303 38
[3]Zhu Y, Liu X J, Gao J, Zhang Y X and Zhao F 2014 Opt. Express 22 7765
[4]Zhao S M, Gong L Y, Li Y Q et al 2013 Chin. Phys. Lett. 30 060305
[5]Anguita J A, Neifeld M A and Vasic B V 2008 Appl. Opt. 47 2414
[6]Glenn A T and Robert W B 2007 Opt. Lett. 32 142
[7]Liu R F, Zhang P, Gao H et al 2012 Chin. Phys. Lett. 29 124203
[8]Rodenburg B, Lavery M P, Malik M et al 2012 Opt. Lett. 37 3735
[9]Gu Y and Gbur J 2010 J. Opt. Soc. Am. A 27 2621
[10]Zhu Y, Zhang Y X, Hu Z et al 2015 Opt. Express 23 9137
[11]Ou J, Jiang Y, Zhang J et al 2014 Opt. Commun. 318 95
[12]Zhang Y X, Cheng M J, Zhu Y et al 2014 Opt. Express 22 22101
[13]Dorilian L M, Miguel A B and Julio C G V 2009 Proc. SPIE 7430 743013
[14]Lu L, Ji X L et al 2014 Acta Phys. Sin. 63 014207 (in Chinese)
[15]Bandres M A and Gutiérrez-Vega J C 2008 Opt. Lett. 33 177
[16]Li Y Q, Wu Z S, Zhang Y Y and Wang M J 2014 Chin. Phys. B 23 064216
[17]Yong C Y, Masino A J, Thomas F E and Subich C J 2004 Waves Random Media 14 1
[18]Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products (Beijing: Beijing Academic Press)
[19]Gu Y and Gbur G 2010 J. Opt. Soc. Am. A 27 2621
Related articles from Frontiers Journals
[1] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 054205
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 054205
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 054205
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 054205
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 054205
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 054205
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 054205
[8] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 054205
[9] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 054205
[10] HUANG Hui-Ling, CHEN Zi-Yang, SUN Cun-Zhi, LIU Ji-Lin, PU Ji-Xiong. Light Focusing through Scattering Media by Particle Swarm Optimization[J]. Chin. Phys. Lett., 2015, 32(10): 054205
[11] GUAN Jin-Ge, ZHU Jing-Ping, TIAN Heng. Polarimetric Laser Range-Gated Underwater Imaging[J]. Chin. Phys. Lett., 2015, 32(07): 054205
[12] YANG Peng-Ju, GUO Li-Xin, JIA Chun-Gang. Doppler Spectrum Analysis of Time-Evolving Sea Surface Covered by Oil Spills[J]. Chin. Phys. Lett., 2015, 32(4): 054205
[13] XU Run-Wen, GUO Li-Xin, FAN Tian-Qi. Composite Scattering from an Arbitrary Dielectric Target above the Dielectric Rough Surface with FEM/PML[J]. Chin. Phys. Lett., 2013, 30(12): 054205
[14] CUI Shuai, ZHANG Xiao-Juan, FANG Guang-You. A Modified MRTD Forward Model of Electromagnetic Scattering with an FDTD/PML Connection Absorbing Boundary Condition[J]. Chin. Phys. Lett., 2013, 30(3): 054205
[15] LU Ming-Zhu, WU Yu-Peng, SHI Yu, GUAN Yu-Bo, GUO Xiao-Li, WAN Ming-Xi. Monte Carlo Simulation of Scattered Light with Shear Waves Generated by Acoustic Radiation Force for Acousto-Optic Imaging[J]. Chin. Phys. Lett., 2012, 29(12): 054205
Viewed
Full text


Abstract