Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 038503    DOI: 10.1088/0256-307X/33/3/038503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Current Controlled Relaxation Oscillations in Ge$_{2}$Sb$_{2}$Te$_{5}$-Based Phase Change Memory Devices
Yao-Yao Lu1,2, Dao-Lin Cai1**, Yi-Feng Chen1, Yue-Qing Wang1,2, Hong-Yang Wei1,2, Ru-Ru Huo1,3, Zhi-Tang Song1
1State Key Laboratory of Functional Materials for Informatics and Nanotechnology Laboratory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100080
3Shanghaitech University, Shanghai 200031
Cite this article:   
Yao-Yao Lu, Dao-Lin Cai, Yi-Feng Chen et al  2016 Chin. Phys. Lett. 33 038503
Download: PDF(998KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relaxation oscillation of the phase change memory (PCM) devices based on the Ge$_{2}$Sb$_{2}$Te$_{5}$ material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately given by the independently designed current testing system. The relaxation oscillation across the PCM device could be measured using an oscilloscope. The oscillation duration decreases with time, showing an inner link with the shrinking threshold voltage $V_{\rm th}$. However, the relaxation oscillation would not terminate until the remaining voltage $V_{\rm on}$ reaches the holding voltage $V_{\rm h}$. This demonstrates that the relaxation oscillation might be controlled by $V_{\rm on}$. The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it, which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.
Received: 16 November 2015      Published: 31 March 2016
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  82.60.Nh (Thermodynamics of nucleation)  
  64.60.Ht (Dynamic critical phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/038503       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/038503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yao-Yao Lu
Dao-Lin Cai
Yi-Feng Chen
Yue-Qing Wang
Hong-Yang Wei
Ru-Ru Huo
Zhi-Tang Song
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 038503
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 038503
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 038503
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 038503
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 038503
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 038503
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 038503
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 038503
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 038503
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 038503
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 038503
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 038503
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 038503
[14] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 038503
[15] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 038503
Viewed
Full text


Abstract