Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 035202    DOI: 10.1088/0256-307X/33/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Using Target Ablation for Ion Beam Quality Improvement
Shuan Zhao1,2, Chen Lin2**, Jia-Er Chen1,2, Wen-Jun Ma2, Jun-Jie Wang3, Xue-Qing Yan2
1School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100191
2State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871
3Beijing Third Hospital, Peking University, Beijing 100191
Cite this article:   
Shuan Zhao, Chen Lin, Jia-Er Chen et al  2016 Chin. Phys. Lett. 33 035202
Download: PDF(1236KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract During the laser foil interaction, the output ion beam quality including the energy spread and beam divergence can be improved by the target ablation, due to the direct laser acceleration (DLA) electrons generated in the ablation plasma. The acceleration field established at the target rear by these electrons, which is highly directional and triangle-envelope, is helpful for the beam quality. With the help of the target ablation, both the beam divergence and energy spread will be reduced. If the ablation is more sufficient, the impact of DLA-electron-caused field will be strengthened, and the beam quality will be better, confirmed by the particle-in-cell simulation.
Received: 25 October 2015      Published: 31 March 2016
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  41.75.Jv (Laser-driven acceleration?)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.59.-f (Intense particle beams and radiation sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/035202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/035202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuan Zhao
Chen Lin
Jia-Er Chen
Wen-Jun Ma
Jun-Jie Wang
Xue-Qing Yan
[1]Borghesi M, Campbell D H, Schiavi A, Haines M G, Willi O, MacKinnon A J, Patel P, Gizzi L A, Galimberti M, Clarke R J and others 2002 Phys. Plasmas 9 2214
[2]Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F and others 2002 Phys. Lett. A 299 240
[3]Bulanov S S, Brantov A, Bychenkov V Y, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K et al 2008 Med. Phys. 35 1770
[4]Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S et al 2000 Phys. Rev. Lett. 85 2945
[5]Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W et al 2000 Phys. Plasmas 7 2076
[6]Schwoerer H, Pfotenhauer S, J?ckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D and Esirkepov T 2006 Nature 439 455
[7]Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K and Fernandez J C 2006 Nat. Phys. 439 441
[8]Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G et al 2007 Nat. Phys. 3 58
[9]Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
[10]Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E et al 2008 Phys. Rev. Lett. 100 135003
[11]Macchi A, Veghini S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003
[12]Henig A, Steinke S, Schnurer M, Sokollik T, Horlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q et al 2009 Phys. Rev. Lett. 103 245003
[13]Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T and Fernandez J C 2007 Phys. Plasmas 14 056706
[14]Albright B J, Yin L, Bowers K J, Hegelich B M, Flippo K A, Kwan T J T and Fernandez J C 2007 Phys. Plasmas 14 094502
[15]Wang H Y, Lin C, Zheng F L, Lu Y R, Guo Z Y, He X T, Chen J E and Yan X Q 2011 Phys. Plasmas 18 093105
[16]Sgattoni A, Londrillo P, Macchi A and Passoni M 2012 Phys. Rev. E 85 036405
[17]McKenna P, Carroll D C, Lundh O, Nürnberg F, Markey K, Bandyopadhyay S, Batani D, Evans R G, Jafer R, Kar S et al 2008 Laser Part. Beams 26 591
[18]Zhao S, Lin C, Wang H Y, Lu H Y, He X T, Chen J E, Cowan T E and Yan X Q 2015 Phys. Plasmas 22 073106
[19]Glinec Y, Genoud G, Lundh O, Persson A and Wahlstrom C G 2008 Appl. Phys. B 93 317
[20]Roth M, Blazevic A, Geissel M, Schlegel T, Cowan T E, Allen M, Gauthier J C, Audebert P, Fuchs J, Meyer ter Vehn J et al 2002 Phys. Rev. ST Accel. Beams 5 061301
[21]Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B and Joshi C 2011 Nat. Phys. 8 95
[22]Nakamura T, Bulanov S V, Esirkepov T Z and Kando M 2010 Phys. Rev. Lett. 105 135002
[23]Ramis R, Schmalz R and Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475
[24]Gurevich A V, Pariiskaya L V and Pitaevskii L P 1966 Sov. Phys. JETP 22 449
[25]Felber F S 1977 Phys. Rev. Lett. 39 84
[26]Sheng Z M, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
[27]Chen M, Sheng Z M, Zheng J, Ma Y Y and Zhang J 2008 Chin. J. Comput. Phys. 25 50
[28]Borghesi M, MacKinnon A J, Barringer L, Gaillard R, Gizzi L A, Meyer C, Willi O, Pukhov A and Meyer-ter-Vehn J 1997 Phys. Rev. Lett. 78 879
[29]Meyer-ter-Vehn J and Sheng Z M 1999 Phys. Plasmas 6 641
[30]Pukhov A and Meyer-ter-Vehn J 1998 Phys. Plasmas 5 1880
[31]Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847
[32]Wilks S C, Kruer W L, Tabak M and Langdon A B 1992 Phys. Rev. Lett. 69 1383
[33]Mora P 2003 Phys. Rev. Lett. 90 185002
Related articles from Frontiers Journals
[1] Shu-Kai He, Jin-Long Jiao, Zhi-Gang Deng, Feng Lu, Lei Yang, Fa-Qiang Zhang, Ke-Gong Dong, Wei Hong, Zhi-Meng Zhang, Bo Zhang, Jian Teng, Wei-Min Zhou, Yu-Qiu Gu. Generation of Ultrahigh-Velocity Collisionless Electrostatic Shocks Using an Ultra-Intense Laser Pulse Interacting with Foil-Gas Target[J]. Chin. Phys. Lett., 2019, 36(10): 035202
[2] Yi-Xing Geng, Qing-Liao, Yin-Ren Shou, Jun-Gao Zhu, Xiao-Han Xu, Min-Jian Wu, Peng-Jie Wang, Dong-Yu Li, Tong-Yang, Rong-Hao Hu, Da-Hui Wang, Yan-Ying Zhao, Wen Jun Ma, Hai-Yang Lu, Zhong-Xi Yuan, Chen-Lin, Xue-Qing Yan. Generating Proton Beams Exceeding 10MeV Using High Contrast 60TW Laser[J]. Chin. Phys. Lett., 2018, 35(9): 035202
[3] Yi-Ying Wu, Quan-Li Dong, Zhao-Hua Wang, Ping Liu, Cheng-Zhen Wang, Yi-Hui Zhang, Zheng-Ming Sheng, Jie Zhang. Electron Dynamics and Characteristics of Attosecond Electromagnetic Emissions in Relativistic Laser-Plasma Interactions[J]. Chin. Phys. Lett., 2018, 35(9): 035202
[4] Wei Song, Rong-Hao Hu, Yin-Ren Shou, Zheng Gong, Jin-Qing Yu, Chen Lin, Wen-Jun Ma, Yan-Yin Zhao, Hai-Yang Lu, Xue-Qing Yan. High-Yield High-Efficiency Positron Generation in High-$Z$ Metal Targets Irradiated by Laser Produced Electrons from Near-Critical Density Plasmas[J]. Chin. Phys. Lett., 2017, 34(8): 035202
[5] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 035202
[6] Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, Zheng-Ming Sheng. Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2016, 33(09): 035202
[7] WANG Wei-Quan, YIN Yan, ZOU De-Bin, YU Tong-Pu, YANG Xiao-Hu, XU Han, YU Ming-Yang, MA Yan-Yun, ZHUO Hong-Bin, SHAO Fu-Qiu. Simulation of the Quasi-Monoenergetic Protons Generation by Parallel Laser Pulses Interaction with Foils[J]. Chin. Phys. Lett., 2014, 31(11): 035202
[8] SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, LU Wei. Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(07): 035202
[9] ZHANG Shao-Hua, YU Xi-Long, CHEN Li-Hong, ZHANG Xin-Yu. Laser Diagnostics of Combustion Enhancement on a CH4/Air Bunsen Flame by Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2013, 30(8): 035202
[10] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 035202
[11] BAN Hong-Ye, GU Yan-Jun, KONG Qing, LI Ying-Ying, ZHU Zhen, S. Kawata. Quasi-monoenergetic Tens-of-MeV Proton Beams by a Laser-Illuminated Funnel-Like Target[J]. Chin. Phys. Lett., 2012, 29(3): 035202
[12] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 035202
[13] XU Miao-Hua**, LI Hong-Wei, LIU Bi-Cheng, LIU Feng, SU Lu-Ning, DU Fei, ZHANG Lu, ZHENG Yi, MA Jing-Long, David Neely, Paul McKenna, WANG Zhao-Hua, WEI Zhi-Yi, YAN Xue-Qing, LI Yu-Tong**, LI Ying-Jun, ZHANG Jie, . Development of a Real-Time Ion Spectrometer with a Scintillator for Laser-Driven Ion Acceleration Experiments[J]. Chin. Phys. Lett., 2011, 28(9): 035202
[14] XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng . Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime[J]. Chin. Phys. Lett., 2011, 28(8): 035202
[15] WU Tao, WANG Xin-Bing** . Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass[J]. Chin. Phys. Lett., 2011, 28(5): 035202
Viewed
Full text


Abstract