Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 033201    DOI: 10.1088/0256-307X/33/3/033201
ATOMIC AND MOLECULAR PHYSICS |
Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions
Bin Duan1**, Muhammad Abbas Bari2, Ze-Qing Wu1, Jun Yan1, Jian-Guo Wang1
1Institute of Applied Physics and Computational Mathematics, Beijing 100088
2Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan
Cite this article:   
Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu et al  2016 Chin. Phys. Lett. 33 033201
Download: PDF(744KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a systematic method to perform calculations of spectral line broadening parameters in plasmas. This method is applied to calculate Stark-broadening line profiles of $P_{\alpha}(n=4\rightarrow n=3)$ transitions under certain specific plasma conditions, by treating this case as an example. In the framework of the fully relativistic Dirac R-matrix theory, we calculate the electron-impact broadening operators, which are assumed to be diagonal matrix to simplify the situation. The electric microfield distribution function is calculated by retaining Hooper's formalism. The dipole matrix elements and atomic structure parameters used in these calculations have been obtained from atomic structure GRASP code. Based on this required data, we calculate the Stark-broadened line profiles of the Paschen spectral lines in He II ions in a systematic manner. Overall, there is a very good agreement between our calculated Stark-broadened line profiles and other line broadening numerical simulation codes (SimU and MELS). Our reported spectral line-broadening data have real applications in plasma spectroscopy, plasma diagnosis and also play a fundamental role in plasma modeling.
Received: 10 November 2015      Published: 31 March 2016
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  52.20.Fs (Electron collisions)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/033201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/033201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Duan
Muhammad Abbas Bari
Ze-Qing Wu
Jun Yan
Jian-Guo Wang
[1]Baranger M 1958 Phys. Rev. 111 481
Baranger M 1958 Phys. Rev. 111 494
Baranger M 1958 Phys. Rev. 112 855
[2]Griem H R 1974 Spectral Line Broadening by Plasma (New York: Academic press)
[3]Simi? Z, Dimitrijevi? M S and Kova?evi? A 2009 New Astron. Rev. 53 246
[4]Haynes Jr D A, Garber D T, Hooper Jr C F et al 1996 Phys. Rev. E 53 1042
[5]Mancini R C, Iglesias C A, Ferri S, Calisti A and Florido R 2013 High Energy Density Phys. 9 731
[6]Stambulchik E, Alexiou S, Griem H R and Kepple P C 2007 Phys. Rev. E 75 016401
[7]Wujec T, Olchawa W, Halenka J and Musielok J 2002 Phys. Rev. E 66 066403
[8]Calisti A, Khelfaoui F, Stamm R, Talin B and Lee R W 1990 Phys. Rev. A 42 5433
[9]Hey J D and Griem H R 1975 Phys. Rev. A 12 169
[10]Ferri S, Calisti A, Mossé C et al 2014 Atoms 2 299
[11]Stambulchik E 2013 High Energy Density Phys. 9 528
[12]Duan B, Bari M A, Wu, Z Q, Yan J, Li Y M and Wang J G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 105701
[13]Iglesias C A 2010 High Energy Density Phys. 6 318
[14]Holtsmark J 1919 Ann. Phys. 363 577
[15]Tighhe R J and Hooper Jr C F 1976 Phys. Rev. A 14 1514
[16]Tighhe R J and Hooper Jr C F 1977 Phys. Rev. A 15 1773
[17]Duan B, Bari M A, Wu Z Q, Yan J and Li Y M 2012 Phys. Rev. A 86 052502
[18]Duan B, Bari M A, Wu, Z Q, Yan J, Li Y M and Wang J G 2012 Astron. Astrophys. 547 A4
[19]Duan B, Bari M A, Wu Z Q, Yan J and Li Y M 2013 Phys. Rev. A 87 032505
[20]Duan B, Bari M A, Wu Z Q, Yan J and Li Y M 2013 Astron. Astrophys. 555 A144
[21]Bely O and Griem H R 1970 Phys. Rev. A 1 97
[22]Seaton M J 1988 J. Phys. B: At. Mol. Opt. Phys. 21 3033
[23]Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
[24]Duan B, Bari M A, Zhong J Y, Yan J, Li Y M and Zhang J 2008 Astron. Astrophys. 488 1155
[25]Norrington P 2009 DARC Manual http://www.am.qub.ac.uk/users/p.norrington
[26]Cowan R 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press)
[27]Iglesias C A 2013 High Energy Density Phys. 9 209
[28]Stambulchik E and Maron Y 2006 J. Quant. Spectrosc. Radiat. Transfer 99 730
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 033201
[2] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 033201
[3] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 033201
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 033201
[5] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 033201
[6] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 033201
[7] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 033201
[8] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 033201
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 033201
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 033201
[11] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 033201
[12] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 033201
[13] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 033201
[14] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 033201
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 033201
Viewed
Full text


Abstract