CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna |
Zhi-Kun Liu, Ya-Nan Xie**, Li Geng, Deng-Ke Pan, Pan Song |
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072
|
|
Cite this article: |
Zhi-Kun Liu, Ya-Nan Xie, Li Geng et al 2016 Chin. Phys. Lett. 33 027802 |
|
|
Abstract We present a surface current method to model the graphene rectangular nanoantenna scattering in the terahertz band with Comsol. Compared with the equivalent thin slab method, the results obtained by the surface current method are more accurate and efficient. Then the electromagnetic scattering of circularly polarized terahertz waves on graphene nanoantennas is numerically analyzed by utilizing the surface current method. The dependences of the antenna resonant frequency with the circularly polarized wave on width and length are consistent with those for the linear polarized waves. These results are proved to be useful to design efficient nanoantennas in terahertz wireless communications.
|
|
Received: 01 September 2015
Published: 26 February 2016
|
|
PACS: |
78.67.Wj
|
(Optical properties of graphene)
|
|
84.40.Ba
|
(Antennas: theory, components and accessories)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
|
|
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [3] Huang Z X, Wang L Y, Bai S Y and Tang Z A 2015 Chin. Phys. Lett. 32 086801 [4] Blake P, Hill E W, Castro N A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124 [5] Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015 Chin. Phys. B 24 076104 [6] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704 [7] Schwierz F 2010 Nat. Nanotechnol. 5 487 [8] Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 0107306 [9] Jablan M, Buljan H and Solja?i? M 2009 Phys. Rev. B 80 245435 [10] Chen T and Lu X H 2015 Chin. Phys. Lett. 32 024204 [11] Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, Mcleod A S, Dominguez G, Thiemens M, Castro N A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M and Basov D N 2013 Nat. Nanotechnol. 8 821 [12] Garciía de Abajo F J 2014 ACS Photon. 1 135 [13] Llatser I, Kremers C, Cabellos-Aparicio A, Jornet J M, Alarcon E and Chigrin D N 2012 Photon. Nanostruct. Fundam. Appl. 10 353 [14] Costa K Q, Dmitriev V, Nascimento C M and Silvano G L 2013 International Microwave and Optoelectronics Conference (Rio de Janeiro Brazil, 4–7 August 2013) p 1 [15] Llatser I, Kremers C, Cabellos-Aparicio A, Jornet J M, Alarcon E and Chigrin D N 2011 The Fourth International Workshop on Theoretical and Computational Nanophotonics (Bad Honnef Germany, 26–28 October 2011) p 144 [16] Han M Y, ?zyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805 [17] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410 [18] Hanson G W 2008 IEEE Trans. Antennas Propag. 56 747 [19] Mikhailov S A 2007 Europhys. Lett. 79 27002 [20] Vakil A and Engheta N 2011 Science 332 1291 [21] Koppens F H L, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|