CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural Design and Experiment of Narrow-Band Response GaAlAs Photocathodes |
Jing Zhao1**, Jian Zhang1, Cui Qin1, Hui-Long Yu1, Yi-Jun Zhang2, Xin-Long Chen2, Ben-Kang Chang2 |
1School of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167 2Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094
|
|
Cite this article: |
Jing Zhao, Jian Zhang, Cui Qin et al 2016 Chin. Phys. Lett. 33 027801 |
|
|
Abstract To obtain the peak response at 532 nm, narrow-band response GaAlAs photocathodes with two GaAlAs active layers of different aluminum compositions are designed in consideration of the maximum absorptivity and quantum efficiency. The transmission-mode and the corresponding reflective-mode photocathodes are grown by metalorganic chemical vapor deposition. The results indicate that the peak response and the cut-off wavelength occur at 532 nm for the two kinds of photocathodes respectively. The response of the reflection-mode photocathode is an order of magnitude higher than that of the transmission-mode photocathode, whereas the better growth quality and the thicker second GaAlAs active layer can improve the transmission-mode response.
|
|
Received: 15 September 2015
Published: 26 February 2016
|
|
PACS: |
78.40.Fy
|
(Semiconductors)
|
|
79.60.Dp
|
(Adsorbed layers and thin films)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
|
|
[1] Orlov D A, Hoppe M, Weigel U, Schwalm D, Terekhov A S and Wolf A 2001 Appl. Phys. Lett. 78 2721 [2] Sun Y, Kirby R E, Maruyama T, Mulhollan G A, Bierman J C and Pianetta P 2009 Appl. Phys. Lett. 95 174109 [3] Spicer W E 1977 Appl. Phys. A 12 115 [4] Pastuszka S, Kratzmann D, Schwalm D, Wolf A and Terekhov A S 1997 Appl. Phys. Lett. 71 2967 [5] Karkare S and Bazarov I 2011 Appl. Phys. Lett. 98 094104 [6] Zhang Y J, Zhao J, Zou J J, Niu J, Chen X L and Chang B K 2013 Chin. Phys. Lett. 30 044205 [7] Zhao J, Shen W K, Chang B K, Zhang Y J, Zhang J and Qin C 2014 Opt. Commun. 328 129 [8] Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 49 3935 [9] Costello K A, Aebi V W and MacMillan H F 1990 Proc. SPIE 1243 99 [10] Sinor T W, Estrera J P, Phillips D L and Rector M K 1995 Proc. SPIE 2551 130 [11] Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C and Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese) [12] Chen X L, Zhao J, Chang B K, Yu X H, Hao G H, Xu Y and Cheng H C 2013 J. Appl. Phys. 113 213105 [13] Zou J J, Chang B K, Yang Z, Zhang Y J and Qiao J L 2009 J. Appl. Phys. 105 013714 [14] Zou J J, Chang B K, Chen H L and Liu L 2007 J. Appl. Phys. 101 033126 [15] Spicer W E 1958 Phys. Rev. 112 114 [16] Sun Y, Liu Z, Pianetta P and Lee D 2007 J. Appl. Phys. 102 074908 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|