Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 027802    DOI: 10.1088/0256-307X/33/2/027802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna
Zhi-Kun Liu, Ya-Nan Xie**, Li Geng, Deng-Ke Pan, Pan Song
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072
Cite this article:   
Zhi-Kun Liu, Ya-Nan Xie, Li Geng et al  2016 Chin. Phys. Lett. 33 027802
Download: PDF(574KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a surface current method to model the graphene rectangular nanoantenna scattering in the terahertz band with Comsol. Compared with the equivalent thin slab method, the results obtained by the surface current method are more accurate and efficient. Then the electromagnetic scattering of circularly polarized terahertz waves on graphene nanoantennas is numerically analyzed by utilizing the surface current method. The dependences of the antenna resonant frequency with the circularly polarized wave on width and length are consistent with those for the linear polarized waves. These results are proved to be useful to design efficient nanoantennas in terahertz wireless communications.
Received: 01 September 2015      Published: 26 February 2016
PACS:  78.67.Wj (Optical properties of graphene)  
  84.40.Ba (Antennas: theory, components and accessories)  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/027802       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/027802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Kun Liu
Ya-Nan Xie
Li Geng
Deng-Ke Pan
Pan Song
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Huang Z X, Wang L Y, Bai S Y and Tang Z A 2015 Chin. Phys. Lett. 32 086801
[4] Blake P, Hill E W, Castro N A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[5] Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015 Chin. Phys. B 24 076104
[6] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704
[7] Schwierz F 2010 Nat. Nanotechnol. 5 487
[8] Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 0107306
[9] Jablan M, Buljan H and Solja?i? M 2009 Phys. Rev. B 80 245435
[10] Chen T and Lu X H 2015 Chin. Phys. Lett. 32 024204
[11] Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, Mcleod A S, Dominguez G, Thiemens M, Castro N A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M and Basov D N 2013 Nat. Nanotechnol. 8 821
[12] Garciía de Abajo F J 2014 ACS Photon. 1 135
[13] Llatser I, Kremers C, Cabellos-Aparicio A, Jornet J M, Alarcon E and Chigrin D N 2012 Photon. Nanostruct. Fundam. Appl. 10 353
[14] Costa K Q, Dmitriev V, Nascimento C M and Silvano G L 2013 International Microwave and Optoelectronics Conference (Rio de Janeiro Brazil, 4–7 August 2013) p 1
[15] Llatser I, Kremers C, Cabellos-Aparicio A, Jornet J M, Alarcon E and Chigrin D N 2011 The Fourth International Workshop on Theoretical and Computational Nanophotonics (Bad Honnef Germany, 26–28 October 2011) p 144
[16] Han M Y, ?zyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[17] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
[18] Hanson G W 2008 IEEE Trans. Antennas Propag. 56 747
[19] Mikhailov S A 2007 Europhys. Lett. 79 27002
[20] Vakil A and Engheta N 2011 Science 332 1291
[21] Koppens F H L, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370
Related articles from Frontiers Journals
[1] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 027802
[2] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 027802
[3] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 027802
[4] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 027802
[5] CHEN Tuo, LU Xuan-Hui. Surface Plasmon and Fabry–Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons[J]. Chin. Phys. Lett., 2015, 32(02): 027802
[6] YAO Bao-Quan, CUI Zheng, DUAN Xiao-Ming, SHEN Ying-Jie, WANG Ji, DU Yan-Qiu. A Graphene-Based Passively Q-Switched Ho:YAG Laser[J]. Chin. Phys. Lett., 2014, 31(07): 027802
[7] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 027802
[8] ZHAO Jun-Qing, WANG Yong-Gang, YAN Pei-Guang, RUAN Shuang-Chen, CHENG Jian-Qun, DU Ge-Guo, YU Yong-Qin, ZHANG Ge-Lin, WEI Hui-Feng, LUO Jie, Yuen H. Tsang. Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation[J]. Chin. Phys. Lett., 2012, 29(11): 027802
Viewed
Full text


Abstract