Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 024203    DOI: 10.1088/0256-307X/33/2/024203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates
Fei Guo, Dan Lu**, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji
Key Laboratory of Semiconductor Materials, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Fei Guo, Dan Lu, Rui-Kang Zhang et al  2016 Chin. Phys. Lett. 33 024203
Download: PDF(1178KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-mode converters at 1.3 μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. Mode conversion from the fundamental mode (TE$_{0})$ to the first order mode (TE$_{1})$ is successfully demonstrated within the wavelength range of 1280–1320 nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
Received: 25 October 2015      Published: 26 February 2016
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.Gn (Optical waveguides and couplers)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/024203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/024203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Guo
Dan Lu
Rui-Kang Zhang
Hui-Tao Wang
Wei Wang
Chen Ji
[1] Saitoh F et al 2010 Opt. Express 18 4709
[2] Riesen N and Love J D 2013 IEEE Photon. Technol. Lett. 25 2501
[3] Koebele C et al 2011 European Conference on Optical Communication (Geneva 18–22 September)
[4] Neo P L et al 2007 OFC/NFOEC (Anaheim 25–29 March)
[5] Hanzawa N et al 2011 OSA/OFC/NFOEC (Los Angeles 6–10 March) OWA4
[6] Li R et al 2011 Proc. SPIE (Shanghai 13–16 November) 8309 83091A
[7] Ding Y et al 2013 Opt. Express 21 10376
[8] Kawaguchi Y and Tsutsumi K 2002 Electron. Lett. 38 1701
[9] Han L et al 2015 Opt. Lett. 40 518
[10] Liang D et al 2010 Materials 3 1782
[11] Leuthold J et al 1998 J. Lightwave Technol. 16 1228
[12] Anderson J and Traverso M 2010 IEEE Commun. Mag. 48 S35
[13] Soldano L B and Pennings E C M 1995 J. Lightwave Technol. 13 615
[14] Feuchter T and Thirstrup C 1994 IEEE Photon. Technol. Lett. 6 1244
[15] Guo F et al 2014 J. Semicond. 35 024012
[16] Besse P A et al 1994 J. Lightwave Technol. 12 1004
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 024203
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 024203
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 024203
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 024203
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 024203
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 024203
[7] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 024203
[8] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 024203
[9] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 024203
[10] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 024203
[11] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 024203
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 024203
[13] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 024203
[14] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 024203
[15] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 024203
Viewed
Full text


Abstract