Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 024202    DOI: 10.1088/0256-307X/33/2/024202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System
Chao-Quan Wang1**, Jian Zou1, Zhi-Ming Zhang2
1School of Physics, Beijing Institute of Technology, Beijing 100081
2Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006
Cite this article:   
Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang 2016 Chin. Phys. Lett. 33 024202
Download: PDF(511KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme for generating squeezed states based on a superconducting hybrid system. Our system consists of a nanomechanical resonator, a superconducting flux qubit, and a superconducting transmission line resonator. Using our proposal, one can easily generate the squeezed states of the nanomechanical resonator. In our scheme, the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy. The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state, which can greatly decrease the effect of the decoherence of the flux qubit on the squeezed efficiency.
Received: 16 October 2015      Published: 26 February 2016
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.-a (Quantum information)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/024202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/024202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao-Quan Wang
Jian Zou
Zhi-Ming Zhang
[1] Slusher R E, Hollberg L W, Yurke B and Mertz J C 1985 Phys. Rev. Lett. 55 2409
[2] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[3] Huo W Y and Long G L 2007 arXiv:0704.0960v2
[4] Li P B and Li F L 2011 Opt. Commun. 284 294
[5] Marthaler M, Sch?n G and Shnirman A 2008 Phys. Rev. Lett. 101 147001
[6] Zagoskin A M, Il'ichev E, McCutcheon M W, Young J and Nori F 2008 Phys. Rev. Lett. 101 253602
[7] Moon K and Girvin S M 2005 Phys. Rev. Lett. 95 140504
[8] Xue F, Liu Y X, Sun C P and Nori F 2007 Phys. Rev. B 76 064305
[9] Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
[10] Dereli T, Gül Y, Forn-Díaz P and Müstecapl?o?lu ? E 2012 Phys. Rev. A 85 053841
[11] Yang C P 2010 Phys. Rev. A 82 054303
[12] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[13] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[14] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W and Yu C C 2005 Phys. Rev. Lett. 95 210503
[15] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[16] Gambetta J M, Houck A A and Blais A 2011 Phys. Rev. Lett. 106 030502
[17] Chen G, Chen Z D, Yu L X and Liang J Q 2007 Phys. Rev. A 76 024301
[18] Zhou X X and Mizel A 2006 Phys. Rev. Lett. 97 267201
[19] de Sá Neto O P, de Oliveira M C, Nicacio F and Milburn G J 2014 Phys. Rev. A 90 023843
[20] Gao M, Liu Y X and Wang X B 2011 Phys. Rev. A 83 022309
[21] Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P and Nori F 2010 Phys. Rev. A 82 032101
[22] Zhang F Y, Pei P, Li C and Song H S 2011 Chin. Phys. Lett. 28 120304
[23] Ji Y H and Hu J J 2014 Chin. Phys. B 23 040307
[24] Semi?o F L, Furuya K, Milburn G J 2009 Phys. Rev. A 79 063811
[25] Xiang Z L, Lü X Y, Li T F, You J Q and Nori F 2013 Phys. Rev. B 87 144516
[26] Wang Y D, Kemp A and Semba K 2009 Phys. Rev. B 79 024502
[27] Chen M Y, Tu M W Y and Zhang W M 2009 Phys. Rev. B 80 214538
[28] Zhu X B, Kemp A, Saito S and Semba K 2010 Appl. Phys. Lett. 97 102503
[29] Wendin G and Shumeiko V S 2005 arXiv:0508729v1
[30] He X L, You J Q, Liu Y X, Wei L F and Nori F 2007 Phys. Rev. B 76 024517
[31] Il'ichev E and Omelyanchouk A N 2008 Low Temp. Phys. 34 413
[32] Shevchenko S N, van der Ploeg S H W, Grajcar M, Il'ichev E, Omelyanchouk A N and Meyer H G 2008 Phys. Rev. B 78 174527
[33] Xue F, Wang Y D, Sun C P, Okamoto H, Yamaguchi H and Semba K 2007 New J. Phys. 9 35
[34] Ruskov R, Schwab K and Korotkov A N 2005 Phys. Rev. B 71 235407
[35] Rabl P, Shnirman A and Zoller P 2004 Phys. Rev. B 70 205304
Related articles from Frontiers Journals
[1] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 024202
[2] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 024202
[3] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 024202
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 024202
[5] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 024202
[6] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 024202
[7] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 024202
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 024202
[9] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 024202
[10] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 024202
[11] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 024202
[12] Mu-Tian Cheng, Gen-Long Ye, Wei-Wei Zong, Xiao-San Ma. Single Photon Scattering in a Pair of Waveguides Coupled by a Whispering-Gallery Resonator Interacting with a Semiconductor Quantum Dot[J]. Chin. Phys. Lett., 2016, 33(02): 024202
[13] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 024202
[14] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 024202
[15] YANG Xu-Dong, LI Chuan-Liang, CHEN Feng-Hua. Polarization Rotation via Asymmetric Optical Pumping[J]. Chin. Phys. Lett., 2014, 31(11): 024202
Viewed
Full text


Abstract