Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 020202    DOI: 10.1088/0256-307X/33/2/020202
GENERAL |
Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential
Yang Song, Jing-Dong Bao**
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
Yang Song, Jing-Dong Bao 2016 Chin. Phys. Lett. 33 020202
Download: PDF(909KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Diffusion of a particle on a tilted periodic surface such as the egg-carton potential is investigated using Langevin Monte Carlo simulations. It is found that the effective diffusion coefficient of the particle related to the one-dimensional case can be greatly enhanced, when the local minima of such potential along the $x$ and $y$ directions are close to vanishing. A relation between the group diffusion and the phase diffusion is used to analyze the enhancement mechanism of the diffusion.
Received: 20 October 2015      Published: 26 February 2016
PACS:  02.50.Ey (Stochastic processes)  
  05.40.Fb (Random walks and Levy flights)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/020202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/020202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Song
Jing-Dong Bao
[1] Antonio B and Gianfranco P 1982 Physics and Applications of the Josephson Effect (New York: Wiley Press)
[2] Kautz R L 1996 Rep. Prog. Phys. 59 935
[3] Reguera D, Rubi J M and Pérez-Madrid A 2000 Phys. Rev. E 62 5313
[4] Fulde P, Pietronero L, Schneider W R and Str?ssler S 1975 Phys. Rev. Lett. 35 1776
[5] Gruner G, Zawadowski A and Chaikin P M 1981 Phys. Rev. Lett. 46 511
[6] Frenken J W M and Van der Veen J F 1985 Phys. Rev. Lett. 54 134
[7] Nixon G I and Slater G W 1996 Phys. Rev. E 53 4969
[8] Reimann P 2002 Phys. Rep. 361 57
[9] Bao J D and Zhuo Y Z 1998 Phys. Lett. A 239 228
[10] Bao J D 2000 Phys. Lett. A 267 122
[11] Khoury M, Lacasta A M, Sancho J M and Lindenberg K 2011 Phys. Rev. Lett. 106 090602
[12] Reimann P, Van den Broeck C, Linke H, H?nggi P, Rubi J M and Pérez-Madrid A 2001 Phys. Rev. Lett. 87 010602
Reimann P, Van den Broeck C, Linke H, H?nggi P, Rubi J M and Pérez-Madrid A 2002 Phys. Rev. E 65 031104
[13] Gang H, Daffertshofer A and Haken H 1996 Phys. Rev. Lett. 76 4874
[14] Reimann P and Eichhorn R 2008 Phys. Rev. Lett. 101 180601
[15] Lü K and Bao J D 2007 Phys. Rev. E 76 061119
[16] Caratti G, Ferrando R, Spadacini R and Tommei G E 1996 Phys. Rev. E 54 4708
[17] Hjelt T and Ala-Nissila T 2000 Surf. Sci. 454 562
[18] Bao J D and Liu J 2013 Phys. Rev. E 88 022153
Related articles from Frontiers Journals
[1] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 020202
[2] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 020202
[3] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 020202
[4] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 020202
[5] HAN Jie, BAO Jing-Dong. Harmonic Noise-Induced Resonant Passing in an Inverse Harmonic Potential[J]. Chin. Phys. Lett., 2014, 31(12): 020202
[6] LIU Jian, BAO Jing-Dong. Effective Jump Length of Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2013, 30(2): 020202
[7] WANG Yan-Zhi, ZHANG Zhi-Xiong, SHI Yi-Peng, SHE Zhen-Su. Synthetic Turbulence Constructed by Self-Learning Fractal Interpolation[J]. Chin. Phys. Lett., 2012, 29(10): 020202
[8] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[9] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 020202
[10] C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics[J]. Chin. Phys. Lett., 2010, 27(8): 020202
[11] ZHANG Li, CAO Li. Effect of Correlated Noises in a Genetic Model[J]. Chin. Phys. Lett., 2010, 27(6): 020202
[12] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 020202
[13] MENG Qing-Kuan, ZHU Jian-Yang. Self-Organization of Weighted Networks in Connection with the Misanthrope Process[J]. Chin. Phys. Lett., 2009, 26(8): 020202
[14] HAN Li-Bo, GONG Xiao-Long, CAO Li, WU Da-Jin. Influence of Coloured Correlated Noises on Probability Distribution and Mean of Tumour Cell Number in the Logistic Growth Model[J]. Chin. Phys. Lett., 2007, 24(3): 020202
[15] ZHONG Wei-Rong, SHAO Yuan-Zhi, HE Zhen-Hui. Correlated Noises in a Prey--Predator Ecosystem[J]. Chin. Phys. Lett., 2006, 23(3): 020202
Viewed
Full text


Abstract