GENERAL |
|
|
|
|
Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface |
Pei Pei1**, He-Fei Huang1, Yan-Qing Guo1, He-Shan Song2 |
1Department of Physics, Dalian Maritime University, Dalian 116026 2School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024
|
|
Cite this article: |
Pei Pei, He-Fei Huang, Yan-Qing Guo et al 2016 Chin. Phys. Lett. 33 020301 |
|
|
Abstract We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanomechanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while capacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the scalability and controllability. Our methods open an alternative perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
|
|
Received: 20 November 2015
Published: 26 February 2016
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.-j
|
(Superconducting devices)
|
|
76.30.Mi
|
(Color centers and other defects)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [3] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311 [4] Li P B, Gu Y, Gong Q H and Guo G C 2009 Phys. Rev. A 79 042339 [5] Guo Y Q, Deng Y, Pei P, Tong D M, Wang D F and Mi D 2015 Chin. Phys. Lett. 32 060303 [6] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and ?ukowski M 2012 Rev. Mod. Phys. 84 777 [7] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401 [8] Yang C P, Su Q P and Nori F 2013 New J. Phys. 15 115003 [9] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [10] Kurizkia G et al 2015 Proc. Natl. Acad. Sci. USA 112 3866 [11] Childress L et al 2006 Science 314 281 [12] S?rensen A S, van der Wal C H, Childress L and Lukin M D 2004 Phys. Rev. Lett. 92 063601 [13] Tian L, Rabl P, Blatt R and Zoller P 2004 Phys. Rev. Lett. 92 247902 [14] André A et al 2006 Nat. Phys. 2 636 [15] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003 [16] Childress L, S?rensen A S and Lukin M D 2004 Phys. Rev. A 69 042302 [17] Twamley J and Barrett S D 2010 Phys. Rev. B 81 241202 [18] Wesenberg J H et al 2009 Phys. Rev. Lett. 103 070502 [19] You J Q and Nori F 2005 Phys. Today 58 42 [20] You J Q and Nori F 2011 Nature 474 589 [21] Schuster D I et al 2010 Phys. Rev. Lett. 105 140501 [22] Kubo Y et al 2010 Phys. Rev. Lett. 105 140502 [23] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and S?rensen A S 2010 Phys. Rev. Lett. 105 210501 [24] Zhu X B et al 2011 Nature 478 221 [25] Saito S et al 2013 Phys. Rev. Lett. 111 107008 [26] Xiang Z L, Lü X Y, Lie T F, You J Q and Nori F 2013 Phys. Rev. B 87 144516 [27] Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R and Lukin M D 2009 Phys. Rev. B 79 041302 [28] Gao M et al 2012 Phys. Lett. A 376 595 [29] Santori C et al 2006 Phys. Rev. Lett. 97 247401 [30] Yin Z Q, Zhao N and Li T C 2015 Sci. Chin. Phys. Mech. Astron. 58 050303 [31] Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302 [32] Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001 [33] Yin Z Q, Yang W L, Sun L and Duan L M 2015 Phys. Rev. A 91 012333 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|