Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 020301    DOI: 10.1088/0256-307X/33/2/020301
GENERAL |
Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface
Pei Pei1**, He-Fei Huang1, Yan-Qing Guo1, He-Shan Song2
1Department of Physics, Dalian Maritime University, Dalian 116026
2School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024
Cite this article:   
Pei Pei, He-Fei Huang, Yan-Qing Guo et al  2016 Chin. Phys. Lett. 33 020301
Download: PDF(672KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanomechanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while capacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the scalability and controllability. Our methods open an alternative perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
Received: 20 November 2015      Published: 26 February 2016
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.-j (Superconducting devices)  
  76.30.Mi (Color centers and other defects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/020301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pei Pei
He-Fei Huang
Yan-Qing Guo
He-Shan Song
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[3] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[4] Li P B, Gu Y, Gong Q H and Guo G C 2009 Phys. Rev. A 79 042339
[5] Guo Y Q, Deng Y, Pei P, Tong D M, Wang D F and Mi D 2015 Chin. Phys. Lett. 32 060303
[6] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and ?ukowski M 2012 Rev. Mod. Phys. 84 777
[7] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[8] Yang C P, Su Q P and Nori F 2013 New J. Phys. 15 115003
[9] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[10] Kurizkia G et al 2015 Proc. Natl. Acad. Sci. USA 112 3866
[11] Childress L et al 2006 Science 314 281
[12] S?rensen A S, van der Wal C H, Childress L and Lukin M D 2004 Phys. Rev. Lett. 92 063601
[13] Tian L, Rabl P, Blatt R and Zoller P 2004 Phys. Rev. Lett. 92 247902
[14] André A et al 2006 Nat. Phys. 2 636
[15] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
[16] Childress L, S?rensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[17] Twamley J and Barrett S D 2010 Phys. Rev. B 81 241202
[18] Wesenberg J H et al 2009 Phys. Rev. Lett. 103 070502
[19] You J Q and Nori F 2005 Phys. Today 58 42
[20] You J Q and Nori F 2011 Nature 474 589
[21] Schuster D I et al 2010 Phys. Rev. Lett. 105 140501
[22] Kubo Y et al 2010 Phys. Rev. Lett. 105 140502
[23] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and S?rensen A S 2010 Phys. Rev. Lett. 105 210501
[24] Zhu X B et al 2011 Nature 478 221
[25] Saito S et al 2013 Phys. Rev. Lett. 111 107008
[26] Xiang Z L, Lü X Y, Lie T F, You J Q and Nori F 2013 Phys. Rev. B 87 144516
[27] Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R and Lukin M D 2009 Phys. Rev. B 79 041302
[28] Gao M et al 2012 Phys. Lett. A 376 595
[29] Santori C et al 2006 Phys. Rev. Lett. 97 247401
[30] Yin Z Q, Zhao N and Li T C 2015 Sci. Chin. Phys. Mech. Astron. 58 050303
[31] Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302
[32] Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001
[33] Yin Z Q, Yang W L, Sun L and Duan L M 2015 Phys. Rev. A 91 012333
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 020301
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 020301
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 020301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 020301
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 020301
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 020301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 020301
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 020301
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 020301
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 020301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 020301
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 020301
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 020301
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 020301
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 020301
Viewed
Full text


Abstract